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We present a method to construct signatures of periodic-like data. Based on topological considerations, our con-
struction encodes information about the order and values of local extrema. Its main strength is robustness to
reparametrization of the observed signal, so that it depends only on the form of the periodic function. The signa-
ture converges as the observation contains increasingly many periods. We show that it can be estimated from the
observation of a single time series using bootstrap techniques.
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1. Introduction

We consider the problem of constructing a descriptor of a periodic function φ : R→ R, based on an
observation of a reparameterized and noisy signal. Specifically, we assume that φ is 1-periodic and we
let γ : [0,T] → [0,R] be an increasing bijection. We consider an observation S of the form

S : [0,T] → R, t �→ (φ ◦ γ)(t) +W(t), (1)

where W = (Wt )t∈[0,T ] = (W(t))t∈[0,T ] is a stochastic noise process. Our aim is to construct a signature
F : S �→ F(S) which contains information about φ while remaining robust to W and to changes in γ.
Such information concerns the form of the period: for instance, it could be the number of local extrema
or their values. In a noiseless scenario, these are characteristic of the period of φ and, to a certain extent,
do not change with γ. To illustrate this objective more concretely, let us consider the two signals φ0
and φ1 on the top of Figure 1 and the two parametrization functions γ0 and γ1 on the left of Figure 1.
We would like to define a signature F such that F(φ0 ◦ γ0 +W) is more similar to F(φ0 ◦ γ1 +W) than
to F(φ1 ◦ γ0 +W), because the former are both observations of φ0, and despite the fact that φ0 ◦ γ0 and
φ0 ◦ γ1 feature three and four periods of φ0 respectively.

Time series or functional observations of the form (1) appear in many applications, where φ is some-
how characteristic of a population: child growth dynamics (Ramsay and Silverman, 2002), physiolog-
ical signals (Goldberger et al., 2000), bird migration curves (Su et al., 2014). The reparametrization γ
is the main source of variability in the point-wise evaluations of the signals, as in the ‘phase variation’
model in Functional data analysis (FDA), see Marron et al. (2015) for a review. The problems typically
considered in FDA consist in aligning a population of curves or computing a representative curve, for
which methods with guarantees have been proposed (Khorram, McInnis and Provost, 2019, Tang and
Müller, 2008, Wang and Gasser, 1997). Underlying most of the models is the assumption that the start
and end points (γ(0) and γ(T) here) are common for all curves.

In applications like magnetic odometry or gait analysis studied in Bonis et al. (2024), Reise (2023)
and Bois et al. (2022) respectively, a single observation is composed of several periods of φ and the
number of periods varies across observations. In Reise (2023), the signal S is the magnetic signal
recorded in a moving car and the problem consists in inferring its displacement. The periodic function
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Figure 1. Four signals Si, j = φ j ◦ γi +W for i, j ∈ {0,1}, for periodic functions φ0, φ1 and reparametrizations
γ0, γ1, corrupted by additive noise.

φmodels the magnetic signature of the angular position, γ, of a wheel of that car. The problem consists
in estimating γ from S. There is little reason for two observations to have the same number of periods,
unless the initial angular position of the wheel and the trajectory are exactly the same across those two
observations. Therefore, in contrast with FDA, the assumption of common endpoints is not satisfied
and the problem changes from describing the whole signal, to that of describing its constituent parts,
that is, the periods of φ.

Techniques from topological data analysis (TDA) are said to describe the ‘shape of data’ and have
been increasingly used to extract geometric or topological information from observations (Chazal and
Michel, 2021). The arguably most popular TDA technique for analyzing a time series consists in com-
puting the homology of the time-delay embedding (TDE) of the time series, in order to verify whether
the underlying phenomenon is periodic or not (Perea, 2019). In applications, it has also been used to
understand dynamical systems behind climate change (Ghil and Sciamarella, 2023), to identify market
crashes (Gidea and Katz, 2018) or to propose biomarkers to detect seizures (Fernández and Mateos,
2022). The TDE of a time series X = (Xn)Nn=1 is a point cloud in Rd , where each point is of the form
(Xn,Xn+τ, . . . ,Xn+(d−1)τ) for parameters d, τ ∈ N. If S is periodic, a simplicial complex constructed on
the TDE at the right scale will have a non-trivial homology group in dimension one. In signals with
phase variation however, the length of the periodic structure changes and so does the geometry of the
TDE. This is corroborated by the fact that the geometry of the delay embedding contains information
about the frequencies supporting the signal (Perea, 2019, section 5).

Techniques other than the TDE have been proposed to extract topological information from time
series. In Corcoran and Jones (2017), the swarm behavior over time has been described with the zig-
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zag persistent homology of sublevel sets of a density estimator. In Khasawneh and Munch (2016), the
authors count revolutions of a machine in an industrial process by counting the number of ‘significant’
changes in a binary signal, where the significance of a change is defined in terms of persistence of
homology generators.

Visual features like local extrema or inflection points (Perng et al., 2000) quantify the ‘shape of
a curve’. Local extrema and excursion sets are particularly useful, since they are invariant to the
reparametrization of the domain. We propose to use the persistent homology of sublevel sets of the
signal to describe this last. This descriptor, the persistence diagram, summarizes the height, order and
number of local extrema.

In many statistical applications, it is convenient to map a persistence diagram to a vector or a func-
tion, via a functional representation. Numerous functionals (Adams et al., 2017, Carrière et al., 2020)
are ‘linear in the diagram’ and their properties have been well-studied in Divol and Polonik (2019). In
our case, it seems natural to renormalize the functionals by the total persistence of the diagram, a proxy
for the unknown number of periods. Building on Divol and Polonik (2019) and a recent characteriza-
tion of the stability of total persistence for Hölder regular processes from Perez (2022), we study the
robustness of the signatures we propose.

Guarantees on the estimation of functionals of persistence diagrams, in both asymptotic and non-
asymptotic cases, have been provided in Berry et al. (2020), Chazal et al. (2014), under the assumption
that the persistence diagrams (or functionals thereof) in the collection are all independent. In a setting
motivated by magnetic odometry problem (Bonis et al., 2024), we have a single time series of which we
would like to estimate the signature. The natural procedure is to construct a sample by taking contiguous
vectors from that observation, what leads to a collection of shorter and dependent observations. We
study two reparametrization models and, building on the theory of strong mixing (Dedecker et al.,
2007, Doukhan, 1994), we show that the dependence between observations decreases. When the β-
mixing coefficients decrease sufficiently fast, the estimators of the functionals also converge in the
dependent setting (Bühlmann, 1995, Kosorok, 2008, Radulović, 1996), not unlike in the independent
case (Chazal et al., 2014). So far, estimation of topological signatures from dependent data has been
less explored: a concentration inequality for persistent Betti numbers from dependent data is derived
in Krebs (2021).

Contributions and outline

In this article, we propose a signature of data of the form (1). The signature captures information about
local extrema and excursion sets. It is defined in the language of persistent homology of sublevel sets
of a one-dimensional function. Our contribution is an analysis which covers the entire process, from
data generation to a bootstrap procedure.

1. By analysing the noiseless case W = 0, we show that the proposed signature is a relevant descrip-
tor. First, the topological functional used in the signature converges as the number of periods in a
signal increases (Theorem 2.14). Second, by construction, it is invariant to reparametrization.

2. We discuss the invariance of the signature to parametrization γ in presence of noise. When the
the endpoints γ(0) and γ(T) of the parametrization γ are fixed, an assumption common in FDA,
we show that the signature is continuous with respect to the distribution of γ (Theorem 3.5).

3. We consider the problem of estimating the signature from stationary time-series data. When the
reparametrization satisfies Markovian properties, we exploit the periodicity of φ to generate a
sample to estimate the signature.

In Section 4, we provide a simple numerical illustration of the signature and its invariance properties.
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Figure 2. On the left, the graph of a function h and four sublevel sets marked with colors. At each level, there
is a different number of connected components. The right panel shows the persistence diagram D(h). The point
contained in the interior of the small rectangle corresponds to the connected component marked in a solid line on
the left panel.

2. Persistence diagrams of sublevel sets and functionals thereof

The signatures we propose are based on excursions sets of stochastic processes. The construction uses
the theory of persistent homology, which we describe in the deterministic setting in this section. We
first introduce a truncated version of persistence to keep boundedness and guarantee continuity of the
persistence-based signatures introduced further. Motivated by some additivity property of persistence
when studying periodic signals, we consider signatures which are normalized by the total persistence.
The objects studied in this section are interesting in themselves. We will therefore adopt a more general
setting than the specific model (1).

2.1. Persistence diagrams and total truncated persistence

In this section, we briefly recall the basics of ordinary persistence theory. A more formal presentation
of persistent diagrams based on terminated persistence modules is given in the proof of Lemma 2.5.

Let h ∈ C(X,R) be a continuous function on a compact topological space X. The α-sublevel set of
h on X is then defined as: Xα = {x ∈ X : h(x) ≤ α}. Generally speaking, ordinary persistence keeps
track of the times of appearance and disappearance of topological features in the sequence of spaces
(Xα)α∈R. In general, these features can be connected components, loops, cavities, etc. In this work,
X ⊂ R so we focus on connected components (0-dimensional features). To fix the ideas, assume that we
store the value αb , called the birth time, for which a new connected component appears in Xαb

. This
connected component eventually gets merged with another one for some value αd ≥ αb , which is stored
as well and called the death time. Moreover, one says that the component persists on the corresponding
interval [αb,αd]. This family of intervals is called the barcode, or persistence diagram, of (X,h), and
can be represented as a multiset of points (i.e., point cloud where points are counted with multiplicity)
supported on R2 with coordinates {(αb,αd)}. Throughout this work, the persistence diagram of h will
be denoted by D(h) or Dh , as X is always the domain of h. See Figure 2 for an illustration.

Since the persistence diagram captures information about the number of connected components and
how they evolve, it does not depend on the parametrization of the domain.

Lemma 2.1 (Invariance to reparametrization). Consider a continuous function f : R→ R and
let γ1,γ2 : [0,T] → R be two increasing and continuous functions, such that γ1(0) = γ2(0) and
γ1(T) = γ2(T). Then,

D( f ◦ γ1) = D( f ◦ γ2).
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Lemma 2.1 is a consequence of the fact that γ2 ◦ γ−1
1 bijectively maps the connected components of

f ◦ γ1 to those of f ◦ γ2.

Proof. For any t ∈ R, the homeomorphism g � (γ−1
1 ◦ γ2) : [0,T] → [0,T] maps the t-sublevel set of

f ◦ γ2 to f ◦ γ1. Indeed,

( f ◦ γ1)−1(] −∞, t]) = {y ∈ [0,T] | ( f ◦ γ1)(y) ≤ t}

= {y = g(x) | ( f ◦ γ1)(g(x)) = ( f ◦ γ2)(y) ≤ t}

= g({y ∈ [0,T] | ( f ◦ γ2)(y) ≤ t}).

Therefore, g induces an isomorphism between the two corresponding persistence modules. So the
corresponding persistence diagrams are the same (as well as any invariants there–of).

Persistence diagrams are also stable with respect to the filter function. One distance which is often
used to compare diagrams is the bottleneck distance

db(D1,D2) = inf
Γ

sup
x∈D1∪Δ

‖x − Γ(x)‖∞,

where Γ : D1 ∪ Δ→ D2 ∪ Δ is a partial bijection between the two diagrams. which allows some points
to be matched to the diagonal Δ. With respect to the supremum norm between functions, the persistence
diagram is stable in that distance.

Theorem 2.2 (Chazal et al. (2016), Cohen-Steiner, Edelsbrunner and Harer (2007)). For two func-
tions f ,g :X→ R with persistence diagrams D f and Dg respectively,

db(D f ,Dg) ≤ ‖ f − g‖∞.

The persistence of (b,d) ∈ R2 is w(b,d)� d − b. For p ∈ N+, the total p-persistence of a persistence
diagram D is the sum of p-powers of the lifetimes of points,

persp(D) = ���
∑

(b,d)∈D
w(b,d)p���

1/p

.

It is similar to total variation for functions on the interval (Plonka and Zheng, 2016). Similarly to
total variation, the total p-persistence of an α-Hölder functions is finite for p > 1/α, but it is not
continuous for functions with regularity strictly less than Lipschitz (Perez, 2022). To keep bound-
edness and guarantee continuity, we introduce the truncated persistence, wε (b,d) � (d − b − ε)+,
where (a)+ = max(a,0) denotes the positive par and ε > 0 is fixed. For ε > 0, the ε-truncated total
p-persistence is

persp,ε (D) = ���
∑

(b,d)∈D
wε (b,d)p

���
1/p

,

and supp(wε ) ⊂ Δε � {(b,d) ∈ R2 | d − b ≥ ε}.
We first give two general results on the truncated persistence of continuous functions defined on an

interval, before focusing to the case of periodic functions. In the statement of Proposition 2.3, both f
and g are deterministic functions.
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Proposition 2.3 (Lower- and upper-bound on ε-truncated p-persistence). For continuous functions
f ,g : [0,T] → R, and for p > 0, ε > 0,

perspp,ε ( f + g) ≥ persp
p,ε+Ag

( f ),

where Ag = maxg − ming. In addition, if f is α-Hölder function with constant Λ and the exponent
satisfies (p − 1)α > 1, then

perspp,ε ( f ) ≤ (Af − ε)p+
(
1 + pT

(
2Λ
ε

) 1/α
)
� Cp,Λ,α,T .

The result is weak but it is tight. For example, for the lower-bound, if we take f such that max f −
min f = 2‖ f ‖∞ and g = −α f , then f + g = (1 − α) f and ‖g‖∞ = α‖ f ‖∞, so that perspp,ε ((1 − α) f ) =
persp

p,ε+2α( f ).

Proof. We start with the lower-bound. Since pers is translation-invariant (persp,ε ( f + c) = persp,ε ( f ),
for any constant c > 0), we can assume that Ag = 2‖g‖∞. Let Γ : D( f ) → D( f + g) be a match-
ing between the diagrams and denote by c(Γ) the associated cost. Thanks to the bottleneck stability
theorem, infΓ c(Γ) ≤ ‖g‖∞. Then, for any (b,d) ∈ D( f ) and (b′,d ′) = Γ((b,d)) ∈ D( f + g), we have
d ′ − b′ ≥ d − b− 2c(Γ) and, for any δ > 0, D( f ) ∩ Δ2c(Γ)+δ ⊂ Γ−1(D( f + g) ∩ Δδ). Then,

perspp,ε ( f + g) =
∑

(b′,d′)∈D( f+g)
wε (b′,d ′)p

≥
∑

(b′,d′)∈D( f+g)∩Δδ

wε (b′,d ′)p

≥
∑

(b,d)∈Γ−1(D( f+g)∩Δδ )
wε ((b,d) − c(Γ)(−1,1))p

≥
∑

(b,d)∈D( f )∩Δ2c(Γ)+δ

wε+2c(Γ)(b,d)p .

For δ = ε , the last quantity is equal to persp
p,ε+2c(Γ)( f ). By taking the infimum over all matchings Γ, we

obtain perspp,ε ( f + g) ≥ persp
p,ε+2‖g ‖∞( f ).

For the upper-bound, we first note that when Af ≤ ε , then perspp,ε ( f ) = 0. For the non-trivial case,
we follow the proof of Theorem 4.13 in Perez (2022). An upper-bound of the covering number of the
image of f , at radius τ > 0 is T(2Λ/τ)1/α + 1, so that

perspp,ε ( f ) ≤ p
∫ A( f )

ε

(
T
(

2Λ
τ

) 1/α
+ 1

)
(τ − ε)p−1dτ

= (Af − ε)p + pT(2Λ)1/α
∫ A( f )

ε

(τ − ε)p−1

τ1/α dτ.

We recall that since Af /τ ≥ 1 and 1/α ≤ p − 1, (Af /τ)1/α ≤ (Af /τ)p−1, so

(τ − ε)p−1

τ1/α =
1

A1/α
f

(
Af

τ

) 1/α
(τ − ε)p−1 ≤ Ap−1−1/α

f

(
1 − ε
τ

) p−1
.
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Finally, by recognizing that 1 − ε/τ ≤ 1 − ε/Af , we obtain

perspp,ε ( f ) ≤ (Af − ε)p + pT(2Λ)1/αAp−1−1/α
f

(1 − ε/Af )p−1(Af − ε)

≤ (Af − ε)(1 − ε/Af )p−1[Ap−1
f
+ pT(2Λ)1/αAp−1−1/α

f
]

≤ (Af − ε)p
(
1 + pT

(
2Λ
A f

) 1/α
)

≤ (Af − ε)p
(
1 + pT

(
2Λ
ε

) 1/α
)
,

where we have used that ε1/α ≤ A1/α
f

.

Proposition 2.4 (Continuity of ε-truncated p–persistence). For any ε > 0, the total ε-truncated
p-persistence perspp,ε : C([0,T],R) → R is continuous. In addition, perspp,ε is Lipschitz over Hölder
functions: for any two α-Hölder functions f ,g with constant Λ and such that p − 2 > 1/α,

|perspp,ε ( f ) − perspp,ε (g)| ≤ p‖ f − g‖∞
(
persp−1

p−1,ε ( f ) + persp−1
p−1,ε (g)

)
≤ Cp−1,Λ,α,T ‖ f − g‖∞.

As for the proof of Proposition 2.3, the proof of Proposition 2.4 relies on bounds on the maximal
number of oscillations of size at least ε .

Proof. Let f ,g ∈ C([0,T]) such that ‖ f − g‖∞ < ε/4. Let Γ : D( f ) → D(g) be a matching. Recall that
|wε (b,d)−wε (ηb,ηd)| ≤ |b−ηb |+ |d−ηd | ≤ 2‖(b,d)−(ηb,ηd)‖∞. In addition, if d−b < ε/2, then both
wε (b,d) = 0 = wε (Γ(b,d)). Using the technique |xp2 − xp1 | = |p

∫ x2
x1

tp−1dt | ≤ p|x2− x1 |max(xp−1
1 , xp−1

2 )
from the proof of Cohen-Steiner et al. (2010, Total Persistence Stability Theorem), we have������ ∑

(b,d)∈D( f )
wε (b,d)p −

∑
(b′,d′)∈D(g)

wε (b′,d ′)p
������ ≤ p

∑
(b,d)∈D( f )

|wε (b,d) − wε (Γ(b,d))| max
x∈{(b,d),Γ(b,d)}

wε (x)p−1

≤ 2p‖ f − g‖∞
∑

(b,d)∈D( f )
d−b≥ε/2

max
x∈{(b,d),Γ(b,d)}

wε (x)p−1

≤ p‖ f − g‖∞
∑

(b,d)∈D( f )
d−b≥ε/2

(wε (b,d) + 2ε/4)p−1

= pCf ‖ f − g‖∞.

Since f is continuous on a compact domain, it is uniformly continuous, so that Cf is finite and does
not depend on g.

For the Lipschitz character, we follow the proof of Perez (2022, Lemma 3.20). For two α-Hölder
functions f , g with constant Λ,������ ∑

(b,d)∈D( f )
wε (b,d)p −

∑
(b′,d′)∈D(g)

wε (b′,d ′)p
������ ≤ p

∑
(b,d)∈D( f )

|wε (b,d) − wε (Γ(b,d))| max
x∈{(b,d),Γ(b,d)}

wε (x)p−1
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Figure 3. On the left, a graph with of several periods of a periodic function, observed on [0,R] for R = 5. The dia-
gram D1 appears 4 times, and the corresponding parts are marked in green on the graph. The red parts correspond
to the remainder D′. The intervals [c − 1,c] and [R,c + N + 1] included as hatched regions are used to bound the
persistence of the remainder. On the left, a graph showing D1 and D′ in green and red respectively.

≤ 2p‖ f − g‖∞
���

∑
(b,d)∈D( f )

wε (b,d)p−1 +
∑

(b′,d′)∈D(g)
wε (b′,d ′)p−1���

= 2p(persp−1
p−1,ε (D( f )) + persp−1

p−1,ε (D(g))‖ f − g‖∞.

By Proposition 2.3, persp−1
p−1,ε (D( f )) ≤ Tα(p−1)Λp−1(1 + (p − 1)21/α), so that

|perspp,ε (D( f )) − perspp,ε (D(g))| ≤ 4pTα(p−1)Λp−1(1 + (p − 1)21/α)‖ f − g‖∞.

We now focus on the case of periodic function, for which the structure of a persistence diagram can
be characterized more finely. Consider φ : R→ R a 1-periodic and continuous function. We denote by
φ|A the restriction of φ to A ⊂ R and by D � D′ the union of two multisets. For n ∈ N∗, nD is the
multiset with the same support as D and with multiplicites increased by a factor of n.

Lemma 2.5 (Additivity of diagrams). Let R > 1. There exists c ∈ [0,1[ such that

D(φ| [0,R]) =
( �R−1�⊔

k=1

D(φ| [c+k−1,c+k])
)
� D′, (2)

for some persistence diagram D′. In addition, D1 � D(φ| [c,c+1]) = D(φ| [c+k−1,c+k]) for any k and
persp,ε (D′) ≤ 2persp,ε (D1) for any ε ≥ 0.

Before giving a complete proof, we provide an illustration of the core idea in Figure 3. By choosing
c ∈ [0,1] to be a global maximum of φ and defining “the period” to be φ| [c,c+1], we can decompose
the diagram of φ| [0,R] as a sum of diagrams of individual periods. These diagrams are all equal and
denoted D1, except for the first and last periods which are not complete and constitute the residual part
D′. Thus, we obtain (2). The total persistence of a diagram of an incomplete period is not greater than
the persistence of a complete period, so persp,ε (D′) ≤ 2persp,ε (D1).

Proof. We start the proof by explicitly defining the terminated persistence modules, using the theory
of persistence modules developed in Chazal et al. (2016). For t ∈ R, we consider the t-sublevel set of h,
Xt = h−1(] −∞, t]) and we define the terminated module

Vt �

{
H0(Xt ), if t <max h

0, otherwise,
(3)
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where H0 is the 0-dimensional singular homology. For any s ≤ t < max h, the inclusion Xs → Xt

induces a morphism between the singular homology groups ιts : Vs → Vt . For t ≥ max h, ιts is the zero
morphism. We call V = ((Vt )t∈R,(ιts)s<t∈R) the terminated persistence module associated to h.

When X is compact and h continuous, for any s < t, the rank of ιts is finite. This allows to define a
measure on rectangles in R2: for any a < b < c < d ∈ R,

m(]a,b] × [c,d[) = dim

(
im(ιc

b
) ∩ ker(ιdc )

im(ιca) ∩ ker(ιdc )

)
,

which counts the number of connected components of Xb that appeared later than in Xa and persist
in Xc , but not until Xd . Finally, we can define the multiplicity of a point (s, t) ∈ R2 with s < t, as
m(s, t) = limδ→0+ m(]s − δ, s + δ] × [t − δ, t + δ[). The diagram D(h) is then the set of points for which
the multiplicity is positive. By convention, m(s, s) =∞, for any point (s, s) ∈ Δ� {(t, t) ∈ R}.

Having introduced the algrebraic tools, we can now characterize the structure of the terminated
persistence module of φ| [0,R]. Let M � maxφ, c � inf{x ∈ [0,1] | φ(x) = M} and N = max{n ∈ N |
c + n ≤ R}. Consider the persistence modules defined by (3) for φ| [0,c], φ| [c,c+N ] and φ| [c+N ,R]. For
t < M ,

φ| [0,c]−1(] −∞, t]) ∩ φ| [c,c+N ]
−1(] −∞, t]) ⊂ {c},

and φ(c) = M , so the intersection is empty and the same holds for φ| [c+N ,R] and φ| [c,c+N ]. Therefore,

H0(φ| [0,R]−1(] −∞, t])) �H0(φ| [0,c]−1(] −∞, t])) ⊕ H0(φ| [c,c+N ]
−1(] −∞, t]))

⊕ H0(φ| [c+N ,R]
−1(] −∞, t])).

(4)

Since the isomorphism is induced by inclusions, it is an isomorphism between the persistence modules
restricted to t ∈] − ∞,M[. By definition (3), the persistence modules are all 0 for t ≥ M , so both sides
of (4) are trivially isomorphic for t ≥ M . Therefore, the persistence modules (on t ∈ R) are isomorphic.

By repeating the same argument as above, we can show that the persistence module of φ| [c,c+N ]
is the direct sum of the persistence modules of (φ| [c+n,c+n+1])N−1

n=0 . Then, for any n = 0, . . . ,N − 1,
gn : x �→ x + n is an isomorphism between the sub level set of φ| [c,c+1] and φ| [c+n,c+n+1], so the
persistence module of φ| [c,c+N ] is isomorphic to the direct sum of N copies of φ| [c,c+1]. Thus, (4)
becomes

H0(φ| [0,R]−1(] −∞, t])) �
(
N−1⊕
n=0

H0(φ| [c,c+1]
−1(] −∞, t]))

)
⊕ H0(φ| [0,c]−1(] −∞, t]))

⊕ H0(φ| [c+N ,R]
−1(] −∞, t])).

The second crucial observation is that the diagram of a direct sum of two persistence modules is
the union of diagrams. The case of interval decomposable modules is treated in Chazal et al. (2016,
Proposition 2.16). The persistence modules that we consider are q-tame (Chazal et al., 2016, Theorem
3.33), so they do not necessarily admit an interval decomposition. Recall that the persistence diagram
is computed via rectangle measures (Chazal et al., 2016, Section 3), defined with ranks of inclusion
morphisms. For two persistence modules V = (Vt )t∈R, W = (Wt )t∈R and any s, t ∈ R, we have that
rank((V ⊕ W)s → (V ⊕ W)t ) = rank(Vs → Vt ) + rank(Ws → Wt ). This shows that the two rectangle
measures (μV + μW ) and μV ⊕W are equal and so are their persistence diagrams. If we denote by
D1 � D(φ| [c+n,c+n+1]) and by D′ the diagram of the sum of the rectangle measures of the φ| [0,c] and
φ| [c+N ,R], then (2) follows.
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We now need to bound the p-persistence of the remainder. Denote by U and V the persistence mod-
ules associated to φ| [0,c] and φ| [0,c] respectively. For any t ∈ R, φ| [0,c]−1(] − ∞, t]) ⊂ φ| [c−1,c]

−1(] −
∞, t]) induces a map Ut → Vt . We claim that it is an injective morphism between persistence mod-
ules. Hence, rank(Us → Ut ) ≤ rank(Vs → Vt ) for any s < t ∈ R and both are finite. Hence, to ev-
ery point (b,d) ∈ D(φ| [0,c]) with b < d, we can assign a point (b′,d ′) ∈ D(φ| [−1+c,c]) in such a way
that this assignment is injective (considered with multiplicity) and such that b′ ≤ b < d ≤ d ′. So,
perspp,ε (D(φ| [0,c])) ≤ perspp,ε (D(φ| [−1+c,c])). A similar argument shows that perspp,ε (D(φ| [c+N ,R])) ≤
perspp,ε (D(φ| [c+N ,c+N+1])).

Remark 2.6. Usually, the persistence module associated to a continuous function is simply

((H0(Xt ))t∈R, (ιts)s<t∈R).

We use terminated modules to force the essential component to have a finite death value, an operation
particularly convenient to obtain (2).

In the case of persistence homology of sublevel sets of periodic functions, most points in the per-
sistence diagram will have multiplicity greater than one, reflecting the number of observed periods,
as stated by Lemma 2.5. When the function is corrupted by additive noise, the points will no longer
be superposed. The additive structure combined with robustness in the form of the bottleneck stability
motivates us to introduce normalized versions of persistence-based signatures.

2.2. Normalized functionals of persistence

The space of persistence diagrams is not a vector space and is ill-suited for statistical purposes. It
is common to map diagrams to a functional Banach space. Many such mappings have been pro-
posed (Adams et al., 2017, Bubenik, 2015, Carrière et al., 2020, Chung and Lawson, 2022) and their
properties are described extensively. For the purpose of creating signatures of periodic functions, func-
tionals normalized by the total persistence are of particular interest. As it is usually the case in the
TDA literature, we present a general set of assumptions and we show examples of functionals from the
literature (or of their adaptation) which fit within the prescribed framework.

Consider U a Euclidean space and let H be a Banach space of functions U→ R. Let k : R2 →H be
a map, which to a point (b,d) in the plane associates a function k(b,d) :U→ R. We give two examples,
the persistence silhouette kernel Λ(b,d) from Bubenik (2015) and the persistence image kernel kpi

from Adams et al. (2017),

Λ(b,d) : R→ R

u �→
(
d−b

2 − |u − b+d
2 |

)
+
,

kpi(b,d) : R2 → R

(x, y) �→ 1
2πσ2 exp

(
−(b−x)2+(d−y)2

2σ2

)
.

Definition 2.7. For a persistence diagram D with persp,ε (D) > 0, the linear and the normalized func-
tionals are defined as

ρ(D)�
∑
x∈D

wε (x)pk(x), ρ(D)� ρ(D)∑
x∈D wε (x)p

. (5)

Otherwise, when persp,ε (D) = 0, we set ρ(D) = 0 = ρ(D).
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Note that ρ(D) and ρ(D) are by construction elements of H , that is functions from U to R. In this
work, we are more specifically interested in diagrams of sublevel sets of functions defined on a compact
interval. In this case we will abuse notation and write ρ( f )� ρ(D( f )).

Remark 2.8. We note a few differences with Persistence Curves introduced in Chung and Lawson
(2022). In that article, the operator aggregating {k(x)}x∈D is different from the sum used here. In addi-
tion, for normalized functionals, the authors only consider kernels of the form k(b,d)(u) = c1[b,d](u),
for some c > 0, which are piecewise constant, so not continuous.

We will assume that k satisfies the following:

1. k(x) has a uniformly bounded support, for all x ∈ R2

∃K ⊂ U compact, k(x)|U\K ≡ 0, ∀x. (6)

2. k(x) is Lipschitz, uniformly over x ∈ R2

∃L > 0, |k(x)(u) − k(x)(s)| ≤ Ld(u, s), ∀x ∈ R2, ∀u, s ∈ U. (7)

3. x �→ k(x) is Lipschitz

∃Lk > 0, ‖k(x) − k(x′)‖H ≤ Lk ‖x − x′‖∞, ∀ x, x′ ∈ R2. (8)

4. k(x) is uniformly-bounded on the diagonal

∃C ≤ 0, ‖k |Δ‖H ≤ C. (9)

Assumptions (7-9) are standard in the literature. Assumptions (8) and (9) guarantee that ‖k(x)‖H is
uniformly bounded on any compact subset of R2. While a condition on ‖k(x)‖H could be imposed for
a different x, an assumption for x ∈ Δ is natural because points in Δ correspond to generators in the
module which exist punctually and do not persist. However, many kernels do not satisfy (6), and it is
often obtained as a consequence of an assumption on the statistical model (Berry et al., 2020, Chazal
et al., 2014). To adapt a kernel to this assumption, we can precompose it with a projection. Specifically,
let Q < U ∈ R and consider πQ,U : Δ≥0 → Δ≥0 the operator which maps points above the diagonal,
onto the upper triangle with corner at (Q,U)

πQ,U : Δ≥0 → Δ≥0
(b,d) �→ (b,d) + (1,−1)min(max(d −U,Q − b,0), d−b2 ). (10)

Examples of kernels which satisfy the assumptions (6)-(9) are given below for the Persistence Silhou-
ette and the Persistence Image, and sample realisations are shown in Figure 4. The calculations of the
Lipschitz constants are carried out in Section A of the supplement Chazal, Michel and Reise (2025).

Example 2.9 (Persistence Silhouette). We set ks(b,d)(u) =Λ(πQ ,U (b,d))(u), so that

supp(ks(b,d)) ⊂ supp(Λs(Q,U)) = [Q,U].

Since t �→ ks(b,d) is piecewise linear with slopes 0, 1 and −1, L = 2 = Lk . The kernel is zero on the
diagonal, so C = 0 is enough to satisfy (9).
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Figure 4. On the right, a persistence diagram with ε = 1, L = 1 and U = 4.5 marked in dashed and dotted lines.
In the center and on the right, two functionals ρ evaluated on that diagram, with ks and kpi,t (σ = 1,r = 1.1)
respectively, both weighted by the truncated persistence wε with p = 2.

Example 2.10 (Persistence Image). In order for kpi to have bounded support and remain Lipschitz,
we propose to multiply by it the distance to a square of size 2σ to (b,d), namely, for some r > 1, set

kpi,r (b,d)(x, y) =
(
2 − ‖πQ ,U (b,d)−(x,y)‖∞

σ

) r
+

kpi(πQ,U (b,d))(x, y).

We obtain the original persistence image kernel when we set r = 0 and Q = ∞,U = ∞. Note that a
simple truncation of kpi is not enough, as the kernel would not be continuous at the truncation interface.
The function (x, y) �→ exp(−(x2 + y2)) is (4/e)-Lipschitz and (x, y) �→ (2 − ‖(b,d) − (x, y)‖∞/σ)r+ is
(r2r/σ)-Lipschitz, for the Minkowski distance. Hence, Lkpi ,r = 2r−1(r + 2)/πσ3 and L = 2r+1/πeσ3.

Continuity of functionals has been studied, notably in Divol and Polonik (2019) and Chung and
Lawson (2022). In the first, it was fully characterized, but only for linear functionals. In the latter, func-
tionals were considered under the L1 metric. Due to the nature of the statistical results in Section 3.3,
we are particularly interested in ‖ · ‖∞, so we repeat the proof of Divol and Polonik (2019, Theorem 3)
for linear functionals ρ and we derive results for normalized functionals ρ.

Proposition 2.11 (Stability). Suppose that the persistence of any point in D1 and D2 is bounded by a
uniform constant U and that k satisfies (6), (8) and (9). Then,

‖ρ(D1) − ρ(D2)‖H ≤
(
Lkperspp,ε (D1) + p(LkU +C)

∑
k=1,2

persp−1
p−1,ε (Dk )

)
dB(D1,D2), (11)

‖ρ(D1) − ρ(D2)‖H ≤ ���Lk + 2p(LkU +C)
persp−1

p−1,ε (D1) + persp−1
p−1,ε (D2)

perspp,ε (D1)
��� dB(D1,D2). (12)

Remark 2.12. The result we give for ρ is a special case of Divol and Polonik (2019, Theorem 3). To
see this, notice that using the notations of that article, Lip(φ) = Lk , A= p, and α = p, where ‘p’ is from
our work. In their article, p =∞ and a = 1. In particular, we see exactly that supx ‖k(x)‖H ≤ LkU +C.

Proof. Let Γ : D1 → D2 be a matching between the two diagrams, we have

‖ρ(D1) − ρ(D2)‖H ≤
∑
x∈D1

wε (x)p ‖k(x) − k(Γ(x))‖H + ‖k(Γ(x))‖H |wε (x)p − wε (Γ(x))p |
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≤ sup
x∈D1

‖k(x) − k(Γ(x))‖H
∑
x∈D1

wε (x)p

+ sup
x∈D1

‖k(Γ(x))‖H
∑
x∈D1

|wε (x)p − wε (Γ(x))p |

≤ LkdB(D1,D2)perspp,ε (D1)

+ p(LkU +C)
∑
x∈D1

|wε (x) − wε (Γ(x))|(wε (x)p−1 + wε (Γ(x))p−1),

where in the last inequality, we used that

‖k(Γ(x))‖H ≤ Lk ‖k(x1, x2) − k( x1+x2
2 ,

x1+x2
2 )‖H + ‖k

( x1+x2
2 ,

x1+x2
2

)
‖H = Lk

x2−x1
2 +C.

The sum in the second term is bounded from above by dB(D1,D2)(persp−1
p−1,ε (D1) + persp−1

p−1,ε (D2)).
Consider now the normalized version:

‖ρ(D1) − ρ(D2)‖H ≤ ‖ρ(D1) − ρ(D2)‖H∑
x∈D1

wε (x)p
+ ‖ρ(D2)‖H

|
∑

x∈D1
wε (x)p −

∑
y∈D2

wε (y)p |∑
x∈D1

wε (x)p

≤dB(D1,D2)
���Lk + p(LkU +C)

persp−1
p−1,ε (D1) + persp−1

p−1,ε (D2)

perspp,ε (D1)
���

+ p(LkU +C)dB(D1,D2)
persp−1

p−1,ε (D1) + persp−1
p−1,ε (D2)

perspp,ε (D1)

≤ ���Lk + 2p(LkU +C)
persp−1

p−1,ε (D1) + persp−1
p−1,ε (D2)

perspp,ε (D1)
��� dB(D1,D2).

Combine persp−1
p−1,ε (D1) + persp−1

p−1,ε (D2) ≤ 2 maxk=1,2 persp−1
p−1,ε (Dk) with the observation that the

bound is symmetric so that we can have perspp,ε (D2) in the denominator.

Corollary 2.13. Let f ∈ C([0,T],R) such that Af > ε . Then, the linear and normalized functionals
ρ(D( f )) and ρ(D( f )) in (5) are well-defined. In addition, h �→ ρ(D(h)) is continuous at f for ‖ · ‖∞.

Proof of Corollary 2.13. Since f is continuous on a compact domain, it is also uniformly continuous
and bounded. Let δ > 0 be such that | f (t) − f (s)| < ε , whenever |s − t | < δ. By the reasoning of the
proof of (Cohen-Steiner et al., 2010, Persistence Cycle Lemma), |ω−1(]ε,∞[) ∩ D( f )| ≤ 1 + T/δ. Let
Mf =max( f ), m f =min( f ). Then,

‖ρ(D( f ))‖H ≤
∑

(b,d)∈D( f )
wε (d − b)p ‖k(b,d)‖H

≤ (Tδ + 1) · wε (Mf − m f )p max
(b,d)∈D( f )∩Δ+ε

‖k(b,d)‖H .
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As stated above, the number of points is bounded from above, and so is the total persistence, thus
showing that ρ(D( f )) is well-defined. For the normalized functional,

‖ρ(D( f ))‖H ≤ (Tδ + 1) max
(b,d)∈D( f )∩Δ≥ε

‖k(b,d)‖H ≤ (Tδ + 1) max
(b,d)∈D( f )∩Δ≥ε

‖k(b,d)‖H .

To show the continuity, let z > 0 and consider h ∈ C([0,T],R) such that ‖ f − h‖∞ < rf , where

rf � min
(

persp−1
p−1,ε ( f )

4pM f (A f +ε/2)p−1 ,
z

Lk+4p(2Lk A f )persp−1
p−1,ε ( f )/perspp ,ε ( f )

,
A f −ε

2

)
,

and Mf = |D( f ) ∩ Δ≥ε/2 |. By continuity of truncated persistence, and with the modulus of continuity
from the proof of Proposition 2.4, we have persp−1

p−1,ε (h) ≤ 2persp−1
p−1,ε ( f ). We observe that d − b ≤ Af

for (b,d) ∈ D( f ) and that d − b ≤ Ah ≤ Af + 2‖ f − h‖∞ ≤ 2Af . Applying Proposition 2.11 to D1 =

D( f ), D2 = D(h) with U = 2Af , we obtain

‖ρ(D( f )) − ρ(D(h))‖H ≤
(
Lk + 4p(2Af Lk +C)

persp−1
p−1,ε ( f )

perspp ,ε ( f )

)
dB(D( f ),D( f )) ≤ z.

2.3. Normalized functionals of persistence for periodic functions

Let us now go back to the persistence diagram of a 1-periodic and continuous function φ : R→ R.
As a consequence of the additivity of diagrams (Lemma 2.5), we find that the normalized functionals
are consistent. Indeed, the functional converges because the contribution of the boundary effects in
the normalized functional ρ(φ| [0,R]) decreases as the number of observed periods increases to infinity.
This justifies calling the limit the “signature of φ”.

Theorem 2.14 (Consistency). Assume that k satisfies (8) and (9). Then, there exists c ∈ [0,1[ such that
as R →∞,

ρ(D(φ| [0,R]))
‖ · ‖H−−−−→ ρ(D(φ| [c,c+1])).

Proof. Let D1 = D(φ| [c,c+1]), D′ be given by Lemma 2.5 and let DR = D(φ| [0,R]). Then,���� ρ((R−1)D1)+ρ(D′)
perspp ,ε (DR ) − ρ(D1)

perspp ,ε (D1)

����
H
≤
���� ρ(D′)

perspp ,ε (DR )

����
H
+

���� ρ((R−1)D1)
perspp ,ε (DR ) −

ρ(D1)
perspp ,ε (D1)

����
H
,

and ���� ρ((R−1)D1)
perspp ,ε (DR ) −

ρ(D1)
perspp ,ε (D1)

����
H
≤
���� perspp ,ε (D1)ρ((R−1)D1)−(perspp ,ε ((R−1)D1)+perspp ,ε (D′))ρ(D1)

perspp ,ε (DR )perspp ,ε (D1)

����
H

≤ ‖perspp ,ε (D′)ρ(D1)‖H
perspp ,ε (DR )perspp ,ε (D1)

,

where we have used that for any N ∈ N,

perspp,ε (ND1)ρ(D1) = Nperspp,ε (D1)ρ(D1) = perspp,ε (D1)ρ(ND1).
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Now, we observe that perspp,ε (DR) = perspp,ε ((R − 1)D1) + perspp,ε (D′) ≥ (R − 1)perspp,ε (D1) and
perspp,ε (D′) ≤ 2perspp,ε (D1) to obtain that

‖ρ(D(φ| [0,R])) − ρ(D(φ| [c,c+1]))‖H ≤ ‖ρ(D′) ‖H
perspp ,ε (DR ) +

‖perspp ,ε (D′)ρ(D1)‖H
perspp ,ε (DR )perspp ,ε (D1)

≤ ‖ρ(D′) ‖H+2‖ρ(D1)‖H
(R−1)perspp ,ε (D1)

. (13)

Using the Minkowski inequality,

‖ρ(D′)‖H = ‖
∑
x∈D′

wε (x)pk(x)‖H ≤
∑
x∈D′

|wε (x)p | max
x∈D′

‖k(x)‖H ≤ perspp,ε (D′) max
x∈D′

‖k(x)‖H .

Because k is Lk-Lipschitz by (8), for any x ∈ D′, we have ‖k(x)‖H ≤ Lk ‖x − π(x)‖∞ + ‖k(π(x))‖∞,
where π(b,d) = ((b+ d)/2,(b+ d)/2). Using (9) on one hand, and the fact that the distance of any point
in the diagram to Δ is bounded by Aφ , we obtain ‖k(x)‖H ≤ Lk Aφ/2 + C. A similar bound holds for
‖ρ(D1)‖H . Going back to (13), we have that

‖ρ(D(φ| [0,R])) − ρ(D(φ| [c,c+1]))‖H ≤
(2|perspp,ε (D1)| + |perspp,ε (D1)|)maxx∈D′ ‖k(x)‖H

(R − 1)perspp,ε (D1)

≤
4(C + Lk Aφ)

R − 1
,

what converges uniformly to 0 as R tends to infinity.

We conclude the section with another stability bound of normalized functionals under reparametriza-
tion and (deterministic) additive noise.

Proposition 2.15. Let (γk : [0,T] → [0,Rk])k=1,2 be two fixed reparametrizations, for Rk > 2 and let
g1,g2 ∈ C([0,T],R) be two α-Hölder functions with constant Λg and with sup-norm bounded as follows
‖gk ‖∞ < Aφ/2. Then,

‖ρ(φ ◦ γ1 + g1) − ρ(φ ◦ γ2 + g2)‖H ≤ Lk

(
4Aφ

min(R1 ,R2)−2 + P(max(‖g1‖∞, ‖g2‖∞))
)
,

where P(x) = O(x).

The expression of P(x) can be found in the proof below. The Proposition is a straightforward con-
sequence of Proposition 2.11 and Theorem 2.14. Note that the right–hand side is strictly positive, even
in the noiseless case g = 0. It is not surprising, because the bounds we use are very crude: we remove
the noise and we compare the respective signatures to the limit object ρ(φ). In the next section we
will provide alternative stability bounds for signatures under reparametrization and additive noise in a
stochastic setting. We finish this section with the proof of Proposition 2.15, preceeded by a lemma.

Lemma 2.16 (Perturbed, pathwise version). Consider g ∈ C([0,T],R) an α-Hölder function with
constant Λ and set δ � ‖g‖∞. If 2δ ≤ maxφ − minφ, then

‖ρ(φ + g) − ρ(φ)‖H ≤ Lk(P1δ + P2δ
2 + P3δ

3)� LkP(δ),

where

P1 =1 + 4AφCTCε
p−1,p(φ),
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P2 =8CTCε
p−1,p(φ) + 4pAφ(CTCε

p−2,p(φ) +
Cp−3,Λ,α,T

perspp ,ε (φ)
),

P3 =4p
(
CTCε

p−2,p(φ) +
Cp−3,Λ,α,T

perspp ,ε (φ)

)
,

and

CT =
�T�

�T� − 2
, Cε

p,p′ (φ) =
perspp,ε (φ)

persp
′

p′,ε (φ)
, Aφ = ‖φ‖∞.

Proof. By the diagram stability theorem, dB(D(φ + g),D(φ)) ≤ ‖g‖∞ ≤ δ. The persistence of a point
in D(φ) and D(φ + g) is bounded by 2Aφ and 2Aφ+g ≤ 2(Aφ + δ) respectively. Using Proposition 2.4,
we also bound persp

p−1,ε (φ + g) ≤ persp−1
p−1,ε (φ) + pδ(persp−2

p−2,ε (φ) + persp−2
p−2,ε (g)). Using the uniform

bound on persistence from Proposition 2.3, persp−2
p−2,ε (g) ≤ Cp−3,Λ,α,T . Finally, putting these together

with Proposition 2.11, we obtain:

‖ρ(φ) − ρ(φ + g)‖H ≤ Lk
���1 + 2pU

persp−1
p−1,ε (φ) + persp−1

p−1,ε (φ + g)

perspp,ε (φ)
��� dB(D(φ),D(φ + g))

≤ δLk

(
1 + 4p(‖φ‖∞ + δ)

2 �T �persp−1
p−1,ε (φ | [c ,c+1])+pδ(persp−2

p−2,ε (φ)+Cp−3,Λ,α,T )
( �T �−2)perspp ,ε (φ)

)
≤ δLk

[ (
1 + 4AφCTCε

p−1,p(φ)
)
+(

8CTCε
p−1,p(φ) + 4pAφ(CTCε

p−2,p(φ) +
Cp−3,Λ,α,T

perspp ,ε (φ)
)
)
δ1 +

4p
(
CTCε

p−2,p(φ) +
Cp−3,Λ,α,T

perspp ,ε (φ)

)
δ2
]
.

Proof of Proposition 2.15. Combining Lemma 2.16 and Theorem 2.14,

‖ρ(φ ◦ γ1 + g1) − ρ(φ ◦ γ2 + g2)‖H ≤ ‖ρ(φ + (g1)γ−1
1
) − ρ(φ| [0,R1])‖H +

‖ρ(φ| [0,R1]) − ρ(φ| [0,R2])‖H +
‖ρ(φ| [0,R2]) − ρ(φ + (g2)γ−2

2
)‖H

≤ Lk(P(δ1) + P(δ2) + 2 4
min(R1 ,R2) ‖ρ(φ| [c,c+1])‖H)

≤ Lk

(
P(δ1) + P(δ2) + 8

min(R1 ,R2)−2
Aφ

2

)
≤ Lk

(
P(max(δ1, δ2)) +

4Aφ

min(R1 ,R2)−2

)
.

3. Signatures of periodic signals with phase variation

In this Section we define what we call the signature of a reparametrized periodic function, in a proba-
bilistic model. Next we provide robustness properties of the signature and statistical guarantees for its
estimation.
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3.1. Generative model and persistence-based signature

As the signature will be defined in term of an expectation, we first need to specify the probabilistic
model associated to our main model (1).

• We fix φ : R→ R to be a continuous and 1-periodic function.
• We consider reparametrizations which have a lower-bound on the modulus of continuity. Specif-

ically, let Γvmin � {γ ∈ C([0,T],R) | γ(s) − γ(t) ≥ vmin(s − t), for all s ≥ t} be the space of
reparametrizations, equipped with the Borel σ-algebra B(‖ · ‖∞) and let μ be a probability measure
on that space.

• We consider CAφ−(ε+q)([0,T],R) � {W ∈ C([0,T],R) | AW ≤ Aφ − (ε + q)} the closed subspace
of continuous functions with amplitude bounded by Aφ − (ε + q) for some q > 0 and let ν be a
probability measure on (CAφ−(ε+q)([0,T],R),B(‖ · ‖∞)).

Under theses assumptions, we consider the stochastic process

S : t �→ φ(γ(t)) +W(t), (14)

where γ and W are independent, γ ∼ μ and W ∼ ν. Moreover the process γ is not assumed to be
observed. Indeed, it is not necessary to observe γ to define our persistence-based signature, which is
robust to the temporal changes.

We are now in position to introduce our persistence-based signature built on the signal S. Starting
from a kernel k, we define ρ(S) as in Equation (5). For a realization S(w) of S and u ∈ U, and we can
calculate ρ(S(w))(u) ∈ R. Since AS(w) ≥ Aφ − AW ≥ ε + q, by Corollary 2.13, ρ(S)(u) is a bounded
real-valued random variable. We then define the signature of S point-wise as

F(S)(u)� E[ρ(S)(u)] = Eγ∼μ,W∼ν[ρ(φ ◦ γ +W)(u)], (15)

where the expectation is taken with respect to the law of the process.

Remark 3.1. Note that T is fixed in our setting, so that the ‘time’ of the observation is the same, but
γ(T) − γ(0), the number of periods of φ in S may vary. This is in contrast with typical assumptions for
functions with phase variation, where γ(T) − γ(0) is shared between observations.

We now show that ρ(S) ∈ C(U,R) is also a random process.

Proposition 3.2. Under Model (14), if ρ : Cε+q([0,T],R) → C(U,R) is continuous and C(U,R) is ‖ · ‖∞-
separable, then ρ(S) is (C(U,R), ‖ · ‖∞)-measurable.

Since ρ(·)(u) is applied pathwise, it is not obvious under what conditions ρ(S)(u) is a R-valued ran-
dom variable and it is even less whether ρ(S) is a C(U,R)-valued random variable. Such considerations
could be circumvented by using outer probabilities (Kosorok, 2008, Radulović, 1996), but we address
them in Proposition 3.2. For the proof, we will need the following lemma, see Theorem 1.1 in Pettis
(1938).

Lemma 3.3 (Pettis’ measurability theorem). Consider h :Ω→ E, where (E,dE ) is a Banach space.
If E is separable as a metric space and h is weakly-measurable, then h is measurable with respect to
the Borel σ-algebra induced by dE .
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Proof (proposition 3.2). First, assume that S is weakly-measurable on E = C([0,T],R) and that
(C([0,T],R), ‖ · ‖∞) is separable. Using lemma 3.3, we get that S is σ(‖ · ‖∞)-measurable. Because
ρ : Cε+q([0,T],R) → C(U,R) is continuous, it is measurable for the two σ-algebra on the domain and
co-domain. This allows us to conclude that ρ(S) is (C(U,R),σ(‖ · ‖∞))-measurable.

Let us now verify the assumptions of Lemma 3.3. We introduce the notation for the measurable
spaces on which γ and W are defined,

γ : (Ωr ,Ar ) → (Γvmin,σ(‖ · ‖∞)), W : (Ωn,An) →
(
CAφ−(ε+q)([0,T],R),σ(R

[0,T ])
)
.

By continuity of φ, the composition φ ◦ γ is σ(R[0,T ])-measurable. As a sum of two (independent)
random variables, S = φ ◦ γ +W is σ(R[0,T ])-measurable for (Ω,A), where Ω = Ωr × Ωn and A =
Ar ⊗ An. The product σ-algebra σ(R[0,T ]) coincides with that of weak measurability on R[0,T ]. The
space C([0,T],R) with the topology induced by ‖ f ‖∞ � supx∈[0,T ] | f (x)| is a Banach, separable space.
Any subspace of a separable metric space is separable, so S(Ω) is also separable.

3.2. Robustness of the signature to reparametrization

We now investigate the robustness properties of the signature F, in both the noiseless and the additive
noise settings.

3.2.1. Robustness in the noiseless setting

We first consider the noiseless case W = 0. Lemma 2.1 implies that the functional depends only on
the number of periods. As a consequence, the signature F(S) is also robust to the distribution of
reparametrizations, but only when the distributions of endpoints are equal.

Let δt : γ �→ γt be the evaluation map defined on Γvmin . We introduce (δ0,T )�μ� μ ◦ (δ0, δT )−1 the
push-forward measure on R2, which characterizes the distribution of (γ(0),γ(T)).

Proposition 3.4. Consider two probability measures μ1, μ2 on Γvmin . If we let γk ∼ μk such that

(δ0,T )�μ1
L
=(δ0,T )�μ2, then

F(φ ◦ γ1) = F(φ ◦ γ2). (16)

Proof. We first show that we can condition the measure μk on (γk (0),γk (T)) = x. The space of continu-
ous functions C([0,T],R) is Polish, and so is Γvmin as a closed subspace. By Bogachev (2007, Corollary
10.4.6), there are regular conditional measures ((μ1)x(dγ))x∈R2 and ((μ2)x(dγ))x∈R2 . Lemma 2.1 im-
plies that γ �→ ρ(φ◦γ)(u) is constant on δ−1

0,T (x), for any x = (s,r) ∈ R2. For any u ∈ U, using the regular
conditional measure property Bogachev (2007, Definition 10.4.1),

F(φ ◦ γ1)(u) =
∫
Γ

ρ(φ ◦ γ)(u)μ1(dγ)

=

∫
R2

∫
δ−1

0,T (x)
ρ(φ ◦ γ)(u)(μ1)x(dγ)(δ0,T )�μ1(dx)

=

∫
R2

∫
δ−1

0,T (x)
ρ(φ ◦ γ)(u)(μ2)x(dγ)(δ0,T )�μ2(dx)

= F(φ ◦ γ2)(u).
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While it is disappointing to require equality of the marginals (δ0,T )�μ1 and (δ0,T )�μ2 in Proposi-
tion 3.4, removing this assumption poses a difficulty which we now discuss. In short, the main problem
lies in obtaining a fine control on the persistence diagram when ‘cutting’ a domain, [0,R], into [0,R1]
and [R1,R2], for any 0 < R1 < R2. Specifically, we need to consider the difference between D(φ| [0,R2])
and D(φ| [0,R1]) ∪ D(φ| [R1 ,R2]), and it is not zero unless R1 ∈ argmaxφ. When R1 is a global maximum
of φ, we can reason as in the proof of Lemma 2.5. However, this is far from the general situation, in
which case the cut at R1 might induce some spurious points in the diagram, as we now illustrate and
discuss briefly.

Assume for simplicity that γ1 and γ2 are fixed with Rk � γk(T). Without loss of generality, assume
that R1 < R2 and let T1 � γ−1

2 (R1). Lemma 2.1 implies that ρ(φ ◦ γ1) = ρ((φ ◦ γ2)| [0,T1]). If we let
D1 = D((φ ◦ γ2)| [0,T1]) and D2 = D((φ ◦ γ2)| [T1 ,T ]), we obtain that

‖ρ(φ ◦ γ1) − ρ(φ ◦ γ2)‖H ≤ ‖ρ(D1) − ρ(D1 � D2)‖H + ‖ρ(D1 � D2) − ρ(φ ◦ γ2)‖H . (17)

We can conveniently analyze the first term of (17) by observing that a normalized functional of a union
of diagrams is a weighted average of the normalized functionals of the individual diagrams

ρ(D1 � D2) = ρ(D1)
perspp,ε (D1)

perspp,ε (D1 � D2)
+ ρ(D2)

perspp,ε (D2)
perspp,ε (D1 � D2)

,

so that

‖ρ(D1) − ρ(D1 � D2)‖H = ‖ρ(D1)
(

perspp,ε (D1)
perspp,ε (D1 � D2)

− 1

)
+ ρ(D2)

perspp,ε (D2)
perspp,ε (D1 � D2)

‖H

= ‖ρ(D1) − ρ(D2)‖H
perspp,ε (D2)

perspp,ε (D1 � D2)

≤ (Lk Aφ +C)
perspp,ε (D2)

perspp,ε (D1 � D2)
.

We claim that if φ is regular enough and R2 − R1 is small, then so is perspp,ε (D2). The first term in (17)
is thus not too problematic. On the contrary, controlling the second term in (17) is harder. Thanks to
Proposition 2.11, it can be can be upper bounded by dB(D1 � D2,D(φ ◦ γ2)), which, unless R1 is a
global maximum of φ, is positive. In conclusion, we see that to get a general stability from (17), we are
lacking a tight control of of dB(D1 � D2,D(φ ◦ γ2)).

3.2.2. Robustness in the additive noise setting

Let us go back to the model with noise, introduced in (14). Theorem 3.5 expresses the stability
of the signature for different distributions of γ with endpoints γ(0) = 0, γ(T) = R fixed across all
reparametrizations. The aim here is to compare the impact of noise on the signature for two differ-
ent parameterizations. Let 0 < T , Tvmin < R and consider

ΓT ,R,vmin � {γ ∈ C([0,T],[0,R]) | γ(0) = 0,γ(T) = R, 0 ≤ vmin(t − s) ≤ γ(t) − γ(s),∀s ≤ t}.

The set ΓT ,R,vmin is convex. It is also included in C([0,T],R), so it can be naturally endowed with
the sup-norm, for which it is a closed, complete and separable space. In particular, it is a Radon
space, so that all measures on (ΓT ,R,vmin,B(ΓT ,R,vmin )) are inner–regular and locally-finite. Hence, we
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can equip the space of probability measures on (ΓT ,R,vmin,B(ΓT ,R,vmin )) with the Wasserstein distance
W1, ‖ · ‖∞ (Panaretos and Zemel, 2020).

Concerning the noise W , in addition to the bound on AW introduced in (14), we impose a path-wise
regularity condition: for some 0 < r1 < r2,

there exists K = Kr2 ,r1, such that E[|Wt −Ws |r2] ≤ Kr2 ,r1 |t − s |1+r1, for all s, t ∈ [0,T]. (18)

Theorem 3.5 (Stability). Let μ1, μ2 be two probability measures on ΓT ,R,vmin and let γk ∼ μk , for
k = 1,2. We take the same noise process W according to Model (14) in both cases: W ∼ ν and W is
independent from γ1 and from γ2. For the normalized functional ρ defined in (5) with a kernel k that
satisfies (6, 8, 9), if p ≥ 1 +max(r2,r2/(r1 − 1)), then

‖F(φ ◦ γ1 +W) − F(φ ◦ γ2 +W)‖H ≤
C̃(Kr2 ,r1)

vαmin
W1, ‖ · ‖∞(μ1, μ2)α,

where C̃(x) = O(x1/r2 (1 + x1/(r1−1))) depends on φ, ε, p, q and k.

Remark 3.6. Proposition 1.11 in Azaïs and Wschebor (2009) shows that if W satisfies (18), then W
has a version with α-Hölder continuous sample paths, for any 0 < α < r1/r2. Difficulties in treating
W come both from controlling its amplitude and the regularity. The tools that we use are sensitive to
many, small fluctuations. Condition (18) allows us to control the regularity, without imposing a uniform
Hölder character on all paths.

Before giving the proof, we discuss two cases showing that the control in Theorem 3.5 is satisfactory.
First, suppose that μk = δγk for k = 1,2, for some fixed γ1,γ2 ∈ ΓT ,R,vmin . Then, we obtain that the
signature is Hölder, with respect to the distance ‖γ1 −γ2‖∞. It is expected that we do not have complete
invariance: for a fixed path W , the reparametrization γ can influence how the points in the persistence
diagram are displaced. Consider now the case of vanishing noise. If Kr2 ,r1 decreases to zero, then so
does the Hölder constant ΛW and we have indeed that the right-hand side becomes zero.

Note that controlling ‖W ‖∞ is not sufficient for the stability. When AW < ε , the constant factor in
C̃(x) is CΛW = Lk(1 + 8p2 Aφ(Aφ − ε)persp−2

p−2,ε (φ)/(R − 2)qp). We can take the truncation parameter
ε small, in which case q ≈ (Aφ − ε) and so, for a function with a single maximum and minimum, we
have CΛW ≈ Lk(1+ 8p2) > 0, which is not zero. Even though the amplitude of the noise is smaller than
the cut-off ε , it still has an influence on the signature. Therefore, it is important that as the amplitude
decreases, the noise does not become increasingly irregular: it is the case of aW , with a → 0+. The
almost-sure bound on AW gives us the lower–bound on perspp,ε (φ ◦ γ +W), which appears in the
denominator of ρ.

For processes of decreasing amplitude but increasingly irregular, it is more advantageous to bound
‖Wγ−1

1
−Wγ−1

2
‖∞ ≤ 2‖W ‖∞ in the proof. In such a scenario however, we ignore the reparametrizations

so the distance ‖γ−1
1 − γ−1

2 ‖∞ disappears from the bound. Finally, it would be interesting to extend
Theorem 3.5 to Γvmin from Proposition 3.4. In that case, we do obtain W1((μ1)x,(μ2)x) for almost-all
x ∈ R2, but it is not clear that it lower–bounds W1(μ1, μ2).

Remark 3.7. When both endpoints are fixed and common to all reparametrizations, there is no reason
to normalize by the total persistence. The stability comes from the continuity of the functional, not
the renormalisation. Proposition 2.11 states that linear functionals of the form

∑
x∈D wε (x)pkx are

also continuous for Hölder functions, so a statement analogue to Theorem 3.5 also holds for such
functionals.
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Remark 3.8. A similar result to Proposition 2.15 could be shown for the signature F, using the regu-
larity assumption (18).

Proof. We start by treating S path–wise. Using Proposition 2.11 and the bottleneck stability of persis-
tence diagrams,

‖ρ(φ ◦ γ1 +W) − ρ(φ ◦ γ2 +W)‖H = ‖ρ(φ +Wγ−1
1
) − ρ(φ +Wγ−1

1
)‖H

≤ Lk

(
1 + 4pU max

k=1,2

persp−1
p−1,ε (φ+Wγ−1

k
)

perspp ,ε (φ+Wγ−1
k

)

)
‖Wγ−1

1
−Wγ−1

2
‖∞, (19)

where Lk is a regularity constant of the kernel and U is an upper-bound on the persistence of any point
in both diagrams. The persistence of any point in the diagram D(h) of a function h is bounded by Ah .
Hence, the persistence of a point in D(φ +W) is bounded by U = Aφ+W ≤ Aφ + AW ≤ Aφ + (Aφ − ε −
q) ≤ 2Aφ .

Next, we obtain an upper–bound of maxk=1,2 persp−1
p−1,ε (φ +Wγ−1

k
)/perspp,ε (φ +Wγ−1

k
). By Propo-

sition A.1, we can assume that W has α-Hölder paths with a (random) constant ΛW , for α �
min(1,r1 − 1)/r2. This implies that 1 + 1/α < p and we use the continuity of truncated persistence
from Proposition 2.4 to obtain

persp−1
p−1,ε (φ +Wγ−1

k
) ≤ persp−1

p−1,ε (φ| [0,T ]) + (p − 1)‖W ‖∞(persp−2
p−2,ε (φ| [0,T ]) + persp−2

p−2,ε (Wγ−1
k
)). (20)

For any x ∈ [0,1] and p ≥ 0, the function p �→ xp is decreasing, so that

persp−1
p−1,ε (φ| [0,T ]) = (Aφ − ε)p−1

∑
(b,d)∈D

max
(
d−b−ε
Aφ−ε ,0

) p−1

≤ (Aφ − ε)p−1
∑

(b,d)∈D
max

(
d−b−ε
Aφ−ε ,0

) p−2

= (Aφ − ε)persp−2
p−2,ε (φ).

Since ‖W ‖∞ < (Aφ − ε)/2 and the persistence does not depend on the parametrization, equation (20)
becomes

persp−1
p−1,ε (φ +Wγ−1

k
) ≤ (Aφ − ε)persp−2

p−2,ε (φ)
(
1 + p−1

2

(
1 +

persp−2
p−2,ε (W )

persp−2
p−2,ε (φ)

) )
≤ p(Aφ − ε)persp−2

p−2,ε (φ)
(
1 + 1

2
persp−2

p−2,ε (W )

persp−2
p−2,ε (φ)

)
.

An upper–bound for the persistence of W is given in Proposition 2.3

perspp,ε (W) ≤ (AW − ε)p
(
1 + pT

(
2ΛW
ε

) 1/α
)
,

where ΛW is the path–wise Hölder constant of W . The amplitude Aφ upper–bounds the persistence of
a point and it is also realized as the persistence of a pair of a global minimum and a global maximum,



1976 F. Chazal, B. Michel and W. Reise

so persp−2
p−2,ε (φ| [0,R]) ≥ (R − 2)(Aφ − ε)p−2 and hence

perspp,ε (W)

persp−2
p−2,ε (φ)

≤
(
AW−ε
Aφ−ε

) p−2
(AW − ε)2 T

R−2

(
1 + p

(
2ΛW
ε

) 1/α
)
.

Putting the above together, with p ≥ 2,

persp−1
p−1,ε (φ +Wγ−1

k
) ≤ p(Aφ − ε)persp−2

p−2,ε (φ)

×
(
1 +

(
AW−ε
Aφ−ε

) p−2
(AW − ε)2 T

R−2 max
(
1,p

(
2ΛW
ε

) 1/α
) )
.

We have therefore an upper–bound for the numerator. To lower–bound the denominator, we use Propo-
sition 2.3:

perspp,ε (φ +Wγ−1
k
) ≥ persp

p,ε+AW
(φ)

≥ (R − 2)(Aφ − (AW + ε))p

≥ (R − 2)(Aφ − (Aφ − ε + q + ε))p = (R − 2)qp .

We conclude that CΛW upper-bounds maxk persp−1
p−1,ε (φ +Wγ−1

k
)/perspp,ε (φ +Wγ−1

k
),

CΛW � Lk

(
1 + 8p2Aφ

(R−2)qp (Aφ − ε)persp−2
p−2,ε (φ)

×
(
1 +

(
AW−ε
Aφ−ε

) p−2
(AW − ε)2 T

R−2 max
(
1,p

(
2ΛW
ε

) 1/α
) ) )
.

As AW ≤ Aφ − ε − q, the only remaining stochastic term in CΛW is Λ1/α
W . Also, the bound only depends

on R (which is fixed), but not on γ itself.
Let π : Ar ,1 × Ar ,2 → R be a coupling of μ1 and μ2. Specifically, π is a measure on the product

space (G × G,Ar ,1 ⊗ Ar ,2), such that π(A,G) = μ1(A) and π(G,A) = μ2(A), for all A ∈ A. Then,
π ⊗ ν : ((A1,B1),(A2,B2)) �→ π(A1,A2)ν(B1 ∩B2) is a coupling of μ1 ⊗ ν and μ2 ⊗ ν. Using the coupling
and (19),

‖E[ρ(φ ◦ γ1 +W) | W] − E[ρ(φ ◦ γ2 +W) | W]‖H = ‖Eπ[ρ(φ ◦ γ1 +W) − ρ(φ ◦ γ2 +W) | W]‖H
≤ Eπ [‖ρ(φ ◦ γ1 +W) − ρ(φ ◦ γ2 +W)‖H | W]

≤ CΛW E[‖Wγ−1
1

−Wγ−1
2
‖∞ | W]

≤ CΛWΛWE[‖γ
−1
1 − γ−1

2 ‖α∞].

We have thus completely separated the bound into a product, with terms depending on ν and (μ1, μ2).
On one hand, it remains to take the expectation with respect to W . We bound the moments of ΛW

using Theorem A.2, obtaining

E[ΛW ] ≤ 16α+1
α (Kr2 ,r1)

1/r2,

E[Λ1+1/α
W ] ≤ 6r2+2K(1/r2+1/(r1−1))

r2 ,r1 .
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On the other hand, by Jensens’ inequality, E[‖γ−1
1 − γ−1

2 ‖α∞] ≤ E[‖γ−1
1 − γ−1

2 ‖∞]α. Using the lower–
bound on the modulus of continuity,

sup
r ∈[0,R]

|γ−1
1 (r) − γ−1

2 (r)| = sup
t∈[0,T ]

|t − γ−1
2 (γ1(t))| ≤ sup

t∈[0,T ]

1
vmin

|γ2(t) − γ1(t)|.

Taking the infimum over couplings, we obtain the 1-Wasserstein distance W1(μ1, μ2).

3.3. Estimation of the signature of a time series

We have defined the signature and studied its properties for continuous observations. In practical ap-
plications, we do not have access to S, but to observations in the form of a time series X = (Xn)Nn=1.
The purpose of this section is to show how to exploit the periodicity mechanism to obtain asymptotic
statistical guarantees for signatures of a discretized signal.

3.3.1. Time series model

We now consider a time series (Xn)n≥1 which appears as a reparametrization of a 1-periodic function
φ:

Xn = φ(γn) +Wn ∈ R, (21)

where (γn)n≥1 is a strictly increasing time series and (Wn)n≥1 is a stationary noise time series satisfying
E[Wn] = 0 and |Wn | ≤ (Aφ − ε − q)/2 almost-surely. Moreover, (γn)n≥1 and (Wn)n≥1 are assumed to
be independent.

We consider a class of reparametrization processes, defined as discrete integrals of another, positive
time series (Vn)n≥!. Specifically, let

γn+1 = γn + hVn = γ0 + h
n∑

k=0

Vk, (22)

where (Vn)Nn=0 is a sequence of random variables in I � [vmin,vmax] ⊂]0,∞[, independent of γ0 and
h > 0 is a time step.

This model is inspired by dynamics, where the sequence (γn)n∈N could model the displacement
of a body over time and Vn should be thought of as the instantaneous speed. As for the continuous
framework studied before, the latent times γn are not assumed to be observed.

We will consider two models for (Vn)n∈N. In the first one, consecutive velocities are independent.
Since we do not expect a moving body to change speed abruptly, we also consider Vn as a Markov
process on I. In both models, we need assumptions which guarantee that the velocity does not remain
fixed and that we will observe different parts of the signal. In Model 1, it is the lower-bound by the
density, while in Model 2 - the lower-bound of the density directly.

Model 1 ((Vn)n∈N i.i.d). We assume that Vn are independent and follow the same, unknown distribu-
tion on R∗+, which satisfies the following property: there exists 0 < a,b,c such that, for all A ∈ B(]a,b[)
measurable, P(Vk ∈ A) ≥ cμ(A), where μ is the Lebesgue measure.

Model 2 ((Vn)n∈N a Markov Chain). Let (Vn)n be a Markov Chain with transition kernel P. Specif-
ically, v �→ P(v,A) is B(I)-measurable for all A ∈ B(I), and A �→ P(v,A) is a probability measure on
(I,B(I)). We further assume that P(x, ·) is a probability measure that has a density fx with respect to μ
and that:
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1. the density is lower–bounded in a small neighborhood: there exists η, μ0 > 0, such that

fv | [v−η,v+η]∩I ≥ μ0, (23)

2. v �→ fv(x) is continuous for any x ∈ I.

Note that if fx = f, for all x ∈ I, Model 2 reduces to a particular case of the i.i.d setting, where P has
density f, a = vmin,b = vmax and c = μ0.

Example 3.9. Set V0 ∼U(I) and let 0 < η < (vmax − vmin)/4. An example of a transition kernel satis-
fying assumptions of Model 2 is a truncated Gaussian kernel. The truncation is such that the support is
I and σ = η.

3.3.2. Stationary regime for Models 1 and 2

In the next section, we will introduce a topological signature for (Xn)n≥1. To do this, we consider the
stationary regime, as we assumed earlier for continuous processes. We will also discuss extensions to
the non stationary setting at the end of the section. Note that (γn)n≥1 in (22) is not generally a stationary
time series. For instance, for both Models 1 and 2, we have P(γn < γn+1) = 1.

For Model 1, the crucial observation is that the time series (frac(γn))n≥1 is stationary, where
frac(x) � x − �x� denotes the fractional part of a real number. See Appendix B.1 for a formal proof.
The time series (φ(γn))n≥1 = (φ(frac(γn)))n≥1 and (Xn)n≥1 are thus stationary.

Regarding Model 2, it can be checked that (frac(γn),Vn)n≥1 is a Markov Chain which admits a
stationary measure π2 (see Appendix B.2 for details). Under the initial measure π2 the time series
(frac(γn))n≥1 is thus stationary and so is (Xn)n≥1. We will thus assume this initial measure in order to
stay in the stationary setting and denote Model 2-S this setting.

3.3.3. Signature of the time series

As we did for the continuous model, we operate at a fixed time horizon. In the time series setting, we
fix M ∈ N. From the observed time series (Xn)Nn=1, we define “windows” Xn, each of length M along
the time series by

Xn = (Xn, . . . ,Xn+M−1) for n = 1, . . . ,N − M + 1. (24)

Each vector Xn is a RM -valued random vector, and under Models 1 and 2-S, the time series (Xn)n≥1
is stationary.

We want to extend the definition of the signature F to compute it on Xn. Starting from a kernel k,
we first extend the definition of the normalized functional ρ to define it on a vector of length M by

ρ(X1) := ρ(S̃M ), (25)

where S̃M is a continuous process on [0,T] which interpolates between entries of X1. Specifically, we
define S̃M by prescribing its values on the set ((m − 1)T/(M − 1),Xm)Mm=1 and linearly interpolating in
between. The resulting process S̃M follows the continuous model (14), so that ρ(S̃M ) is well-defined.
We then define the signature by integrating ρ(X1):

FM (X1)� E[ρ(X1)].

Note that FM (X1) is a function from U to R. Under Models 1 and 2-S, we obviously have F(X1) =
F(Xn) for any n = 1 . . .N − M + 1, we thus can write

FM := FM (X1) = FM (Xn).
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We now discuss the interest of introducing this signature for the study of time series. When the
discrete model (21)-(22) corresponds to discrete observations of an underlying continuous model of
the form of (1), then the interpolated signal S̃M will be close to its corresponding complete signal S,
when φ and the noise process are smooth enough. In the noiseless case, Theorem 2.14 shows that F(S)
converges to F(φ[c,c+1]), which is an intrinsic signature of the underlying signal φ, as the number of ob-
served periods tends to infinity. To summarize, in an idealized situation where there is very little noise,
for X1 a dense enough sampling along the continuous signal, and for M large enough, the quantity
FM (X1) will be close to the intrinsic quantity F(φ[c,c+1]) which does not depend on the parametriza-
tion. Out of the previous idealized setting, the signature FM (X1) also depends on the noise distribution.
However, the signature is robust (as justified by Theorem 3.5 in the continuous setting). This signature
then can be used for standard data sciences purposes, as for instance change point detection along a
periodic phenomenon subject to phase variations, and for which we wish to develop indicators robust
to phase variations.

3.3.4. Estimation of the signature

In practice, the signature FM has to be estimated because the expectation is unknown. The empirical
counter-part of FM is the empirical mean

F̂M ,N =
1

N−M+1

N−M+1∑
n=1

ρ(Xn),

where ρ(Xn) is defined according to (25). The distribution of F̂M ,N can estimated by Moving Block
Bootstrap (MBB), see Bühlmann (2002). Indeed, the usual nonparametric bootstrap allows to estimate
the distribution of the empirical mean from independent data, but the functional nature of our obser-
vations prevents us from using it. The MBB is a common technique, designed for settings with depen-
dency. To be specific, let L = L(N − M + 1) ∈ N be the block length and let B = L

N−M+1 the number
of blocks we now define, which, without loss of generality, is assumed to be integer-valued. The MBB
consists of sampling B blocks, each composed of L consecutive vectors Xi: that is, (Xn, . . . ,Xn+L−1),
for n ∈ {1, . . .N − M + 1}. The MBB sample is then

(X∗
1, . . . ,X

∗
N−M+1) := (Xn1, . . . ,Xn1+L−1︸����������������︷︷����������������︸

block 1

,Xn2, . . . ,Xn2+L−1︸����������������︷︷����������������︸
block 2

, . . . ,XnB , . . .XnB+L−1︸����������������︷︷����������������︸
block B

),

where n1, . . . nB ∼U(1, . . . ,N − M + 1) are independent. We finally define the bootstrap signature

F̂∗
M ,N =

1
N−M+1

N−M+1∑
n=1

ρ(X∗
n).

Note that the MBB strategy is applied to the time series of vectors (Xn)N−M+1
n=1 , and not to the

initial time series (Xn)Nn=1, see Figure 5 for an illustration. Also note that the bootstrap sample contains
overlapping samples at two different levels. Not only are the windows X1, . . . ,XN overlapping, but also
the different blocks can overlap.

We now prove that the empirical mean F̂M ,N converges to FM and that we can approximate the
distribution of F̂M ,N by that of the bootstrap signature F̂∗

M ,N , as N → ∞. The core idea resides in
exploiting the periodicity to control how the dependence between X1 and X1+k changes as k increases.
For this, we recall the definition of two mixing coefficients, see for instance Doukhan (1994).
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Figure 5. A schematic representation of the MBB, for M = 5 and L = 3.

For a stationary sequence (Yn)n∈N of random variables, denote by σa,b the σ-algebra generated by
Ya, . . .Yb . The k-th φ-mixing coefficient is

φY (k) = sup
A∈σ−∞,0 ,B∈σk ,∞ ,P(A)>0

|P(B|A) − P(B)|.

The k-th β-mixing coefficient is

βY (k) = 1
2 sup
A⊂σ−∞,0 ,
B⊂σk ,∞

∑
A∈A,B∈B

|P(A∩ B) − P(A)P(B)|,

where A, B are countable partitions of the sample space. We say that (Yn)n∈N is absolutely regular
(or β-mixing) if βY (k) → 0 as k →∞. A process for which β(k) ≤ ak , for some 0 < a < 1 is called
exponentially β-mixing. The same definitions apply for the uniform mixing coefficients φY . Moreover
we have that βY (k) ≤ φY (k).

Theorem 3.10. Let the stationary time series (Xn)n≥1 defined by (22) and (24), with (Vn)n≥1 as in
Model 1 or 2-S. Assume that (Wn)n≥1 is exponentially β-mixing. Then,

√
N − M + 1(F̂M ,N − FM ) → GM as N →∞, (26)

where GM is a zero–mean Gaussian process with covariance

(s, t) �→ lim
k→∞

∞∑
n=1

cov
(
ρ(Xk )(s), ρ(Xn)(t)

)
. (27)

In addition, if L(N) → ∞ and L(N) = O(N1/2−ε ) for some ε > 0, then the bootstrap is almost surely
valid:

√
N − M + 1(F̂∗

M ,N − F̂M ,N ) →∗ GM as N →∞, (28)

where the convergence is for the (conditional) bootstrap distribution.
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This result is a functional central limit theorem, similar to many in the literature of topological data
analysis, see for example Chazal et al. (2014) and Berry et al. (2020, Proposition 2 and 3), except that
the samples are not independent. For independent data, it is sufficient to control the complexity of the
functional family. The novel aspect of Theorem 3.10 is the consideration of dependence and it is what
we treat with more care. More precisely, we show the following result:

Proposition 3.11. Let the time series (Xn)n≥1 defined by (24) with (Vn)n≥1 as in (22).

1. If (Vn)n≥1 satisfies Model 1 then the Markov Chain (frac(γn))n≥1 is exponentially φ-mixing.
2. If (Vn)n≥1 satisfies Model 2 then the Markov Chain (frac(γn),Vn)n≥1 is exponentially φ-mixing,

whatever the initial measure.

Note that the proposition is valid for Model 2 in general, meaning also for non stationary regimes,
and in that case more general definitions for β- and φ- mixing coefficients are used, see for instance
Doukhan (1994).

The complete proof of Proposition 3.11 is given in Section B of the supplement Chazal, Michel and
Reise (2025). It relies on a general theorem for Markov chains given in Doukhan (1994), and which
requires a Doeblin-type condition.

Sketch of the proof of Proposition 3.11. For Model 1, we show that a uniform measure with small
but non–zero mass lower-bounds the distribution of frac(

∑n
k=0 Vk ). The fact that the process (frac(γ0 +∑n

k=0 Vk ))n∈N is φ-mixing then follows from general results in dependence theory (Doukhan, 1994,
Section 2.4, Theorem 1). When Vn is generated using Model 2, we find a similar uniform lower–bound
for the n-step transition measure of (frac(γn),Vn). With the assumptions on the kernel in our model, we
show that for n sufficiently large, this lower–bound can be taken to be a uniform measure on [0,1] × I
with small but non–zero mass, chosen uniformly in the initial conditions (frac(γ0),V0). We conclude
again with (Doukhan, 1994, Section 2.4, Theorem 1). This concludes the proof that (frac(γn),Vn)n∈N
is exponentially φ-mixing.

We now give the proof of Theorem 3.10, with all details differed to the supplement Chazal, Michel
and Reise (2025).

Proof of Theorem 3.10. The functional Central Limit Theorem we use to show Theorem 3.10 relies
on the control of β-mixing coefficients in the stationary regime. Moreover, we know that β-mixing
coefficients are upper bounded by φ-mixing coefficients. Thus, under the assumptions of the theorem,
we obtain from Proposition 3.11 that

• under Model 1: (frac(γn))n≥1 is exponentially β-mixing.
• under Model 2-S: (frac(γn),Vn)n≥1 is exponentially β-mixing, and thus (frac(γn))n≥1 is also ex-

ponentially β-mixing.

Next, we analyze how the dependence of (φ(γn))n∈N and (Wn)n∈N shapes the dependence of (Xn)n∈N
and that between the windows X1, . . . ,XN−M+1. Specifically, we have the following inequality

βX(k) ≤ βX (k − (M + 1)) ≤ βfrac(γ)(k − (M + 1)) + βW (k − (M + 1)), for k ≥ M + 1,

of which we present a detailed proof in Section C of the supplement Chazal, Michel and Reise (2025).
Since (Wn)n∈N is exponentially β-mixing by assumption, (Xn)n∈N is exponentially β-mixing. The
Gaussian approximation (26) is a consequence of Kosorok (2008, Theorem 11.24), the statement of
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which is included in Appendix C. Indeed, the arguments above ensure that the mixing coefficients
satisfy

∞∑
k=1

k
2

r−2 βX(k) <∞,

for some r ∈]2,∞[. It remains to verify that the bracketing entropy of the functional family {ρu}u∈U is
controlled, see Section D in the supplement Chazal, Michel and Reise (2025). The approximation of
the distribution of the empirical mean by the bootstrap distribution (28) is a consequence of Bühlmann
(1995, Theorem 1), for which we only need the aforementioned results (see Appendix C).

Remark 3.12. Note that length M of the window is fixed in the Theorem, it does not vary with N . It
would be interesting to make this quantity increases with N . For instance, when we use this signature
to compare two time series, our understanding is that increasing M may improve the discriminative
power of the signature. But too large M will also decrease the sample size of windows Xn, and then the
variance of the empirical signature will increase. Choosing M is a non-trivial issue, which moreover
cannot be easily resolved in practice by a cross-validation approach.

Remark 3.13. A classical framework in Functional Data Analysis (FDA) is when we have access to a
collection of K time series from the same model. Many contributions have been proposed to study this
statistical setting, see for instance Ramsay and Silverman (2002). To recast our setting in this standard
framework of FDA, we need to know how to segment the curve, or the time series, into successive
periods, which is not trivial in practice when there is unknown reparametrization and phase variations
in the signal, see for instance Bonis et al. (2024). The advantage of our approach is precisely that it
avoids this additional step of segmentation.

3.3.5. Discussion on possible extensions

The literature on functional central limit theorems for dependent data is rich in results for various
functional classes and dependence assumptions. We believe it might be possible to use more recent
and stronger results than Bühlmann (1995, Theorem 1). This would allow us to relax the decay of βW
from an exponential to a polynomial one. For instance, Radulović (1996, Theorem 1) is written for VC-
classes functionals, but the proof seems to rely on the bracketing entropy bound that the functionals
considered in the present work also satisfy.

Another natural extension to Theorem 3.10 is the framework of non stationary time series for Model
2. Although the times series (Xn)n≥1 is non stationary, we still define the topological signature FM

with as initial measure the invariant measure π2. According to (Doukhan, 1994, Theorem 1, Section
2.4), the Markov Chain (frac(γn),Vn)n≥1 is φ-mixing and also uniformly ergodic. We can then show
convergence results quite directly only based on Markov chain properties. To keep things simple, let us
consider Model 2 with no noise (Wn = 0). Then, (frac(γn),Vn) admits a Central Limit Theorem (CLT),
as well as (φ (frac(γn))))n≥1, see for instance Theorem 24 and Proposition 29 in Roberts and Rosenthal
(2004). From this we can deduce that F̂M ,N admits a pointwise CLT, meaning for fixed u.

If we now consider mixing properties of Model 2 (with additive noise Wn), several avenues of re-
search are still possible to demonstrate CLTs under non stationary regime. For instance, a CLT for
φ-mixing sequences was obtained in Utev (1990), by assuming the Lindeberg condition. In Rio (1997),
a CLT for strong mixing is given that applies to both non-stationary sequences and triangular array
settings (see also Rio, 2017). More recently, a functional CLT is proposed Merlevède and Peligrad
(2020) for non-stationary strongly mixing sequences. This last contribution certainly paves the way for
demonstrating a result analogous to (26) in a non-stationary setting.
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Figure 6. Signatures of φ1 and φ4, estimated on reparametrized signals described above. The top row shows
the first 3-second window from the 30-second signal, for both functions. The bottom row shows the estimated
signatures and the confidence intervals.

4. Numerical illustration

To illustrate the signatures and their stability, we propose to estimate the signatures of processes with
different periodic functions. Then, we compare the estimate to the signature of a process with a different
reparametrizations.

We will consider periodic functions φ1 and φ4 defined by

φθ = θ(sin(6πt) + |t − �t� − 1
2 | −

1
2 ) + 5 sin(4πt), for θ ∈ R.

The observed signal follows the discrete model (21), with T = 30 seconds and a sampling rate of 50Hz.
The reparametrizations are generated by integrating twice a Markov chain of accelerations, with a
truncated Gaussian transition kernel. The noise is a Gaussian process with covariance

Γ(s, t) = σ2 exp
(
−(s − t)2

2τ2

)
.

We fix the temporal scale τ, but we vary σ = 0.1, 0.5, 2. to illustrate the impact of noise on the signa-
ture.

For ρ, we take the persistence silhouette introduced in Example 2.9, where the weights are given by
the 0.2-truncated 1-persistence (ε = 0.2, p = 1) and we use the projection π−9,9 as in (10). We infer the
signatures on 3-second windows (M = 3 · 50). We construct the 1%-confidence intervals by resampling
200 times, with block lengths of 2 seconds (L = 2 · 50).

In Figure 6, for the same random realization γ1, we calculate the empirical signature F̂ for φ1 and φ4,
and estimate the corresponding confidence intervals for F. For low noise levels, the variance due to the
number of observations and the variability in the endpoints is small, compared to the difference between
the functionals. As the noise level increases, the observed function looses its recurrent appearance and
the signatures become dominated by the noise.



1984 F. Chazal, B. Michel and W. Reise

Figure 7. Signatures of φ1, estimated on two different reparametrized observations. The top row shows the first 3-
second window from the two observed signals. The bottom row shows the estimated signatures and the confidence
intervals.

Consider now two observations with the same periodic function φ1, but different reparametrizations
γ1, γ2. In Figure 7, we can see that for small values of noise, the signatures are close, what confirms
their invariance to reparametrization. It is worth noting that the signals contain different numbers of
periods. For more noisy observations, the signatures lose the robustness.

Appendix A: Moments of the Hölder constant of a stochastic
process

Let (Wt )t∈[0,T ] be a stochastic process. A path t �→Wt (ω) is said to be α-Hölder if |Wt (ω) −Ws(ω)| ≤
ΛW (ω) |s − t |α, for any s, t ∈ [0,T]. Many processes, for example Gaussian processes, do not admit a
uniform constant. Based on Azaïs and Wschebor (2009), Hu and Le (2013), Shevchenko (2017), we
will now give a condition under which ΛW (ω) is a random variable and we will calculate its moments.

Proposition A.1 (Azaïs and Wschebor (2009, Proposition 1.11)). Suppose W satisfies (18) with
Kr2 ,r1 and let α ∈]0,r1/r2[. Then, there exists a version (W ′

t )t∈[0,1] of W and a random variable
ΛW ′,α > 0, such that, for all s, t ∈ [0,1],

P(|W ′
t −W ′

s | ≤ ΛW ′,α |t − s |α) = 1 and P(Wt =W ′
t ) = 1.

Theorem A.2 (Shevchenko (2017)). Let r2 ∈ N be such that Kr2 ,αr2 <∞ and 1 − α > 1/r2, r2 ≥ 2,

E[ΛW ] ≤ 16 α+1
α TK1/r2

r2 ,r2α+1.
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In addition,

E[Λk
W ] ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
23+2/r2 α+2/r2

α

) k
Kk/r2
r2 ,r2α+1, for 0 < k ≤ r2,(

23+2/r2 α+2/r2
α

) k
Kk ,k(α+2/r2)−1, for k > r2.

Lemma A.3 (Garsia–Rodemich–Rumsey Inequality (Hu and Le, 2013, Lemma 1.1)). Let G :
R+→ R+ be a non–decreasing function with limx→∞ G(x) =∞ and δ : [0,T] → [0,T] continuous and
non–decreasing with δ(0) = 0. Let G−1 and δ−1 be lower–inverses. Let f : [0,T] → R be a continuous
functions such that ∫ T

0

∫ T

0
G
(
| f (x) − f (y)|
δ(x − y)

)
dxdy ≤ B <∞.

Then, for any s, t ∈ [0,T],

| f (s) − f (t)| ≤ 8
∫ |s−t |

0
G−1(4B/u2)dδ(u).

Proof of Theorem A.2. Consider a path W(ω) of the stochastic process and set

B(ω)�
∫ T

0

∫ T

0
G (|Wt (ω)Ws(ω)|/δ(t − s)) dtds,

where G(u) = ur2 and δ(u) = uα+2/r2 . Then, G−1(u) = u1/r2 and dδ/du = (α+2/r2)uα+2/r2−1. Applying
Lemma A.3,

|Wt (ω) −Ws(ω)| ≤ 8
∫ |s−t |

0
G−1(4B(ω)/u2)dδ(u)

≤ 8
∫ |t−s |

0

(
4B(ω)

u2

) 1/r2

(α + 2/p)uα+2/r2−1du

≤ 8(4B(ω))1/r2 (α + 2/r2)
∫ |t−s |

0
uα−1du

= 8(4B(ω))1/r2 α+2/r2
α |t − s |α .

As this is valid for any s, t ∈ [0,T], ΛW (ω) ≤ 8(4B(ω))1/r2 (α + 2/r2)/α. By Jensens’ inequality,

E[ΛW ] ≤ 23+2/r2 α+2/r2
α E[B(ω)1/r2 ] ≤ 23+2/r2 α+2/r2

α E[B(ω)]1/r2 . (29)

By linearity of expectation,

E

[∫ T

0

∫ T

0
G
(
|Wt (ω)Ws(ω)|
δ(t − s)

)
dtds

]
=

∫ T

0

∫ T

0

E[|Wt (ω)Ws(ω)|r2 ]
δ(t − s)r2

dtds

=

∫ T

0

∫ T

0

E[|Wt (ω)Ws(ω)|r2 ]
|t − s |pα+2 dtds

≤
∫ T

0

∫ T

0
Kp,pα+1dtds



1986 F. Chazal, B. Michel and W. Reise

= T2Kr2 ,r2α+1.

Finally, E[ΛW ] ≤ 23+2/r2 T2/r2 K1/r2
r2 ,r2α+1 (α + 2/r2)/α, as long as r2α + 1 ≤ r2 and we can simplify the

constants if r2 > 2. Consider now the higher moments. If k ≤ r2, we can still apply Jensens’ inequality
in (29):

E[Λk
W ] ≤

(
23+2/r2 α+2/r2

α

) k
E[B(ω)k/r2 ]

≤
(
23+2/r2 α+2/r2

α

) k
E[B(ω)]k/r2

≤
(
23+2/r2 α+2/r2

α

) k
Kk/r2
r2 ,r2α+1.

However, if k ≥ r2,

E

[ (∫ T

0

∫ T

0
G
(
|Wt (ω)Ws(ω)|
δ(t − s)

)
dtds

) k/r2
]
=

∫ T

0

∫ T

0

E[|Wt (ω)Ws(ω)|k ]
δ(t − s)k

dtds

=

∫ T

0

∫ T

0

E[|Wt (ω)Ws(ω)|k ]
|t − s |kα+2k/r2

dtds

≤
∫ T

0

∫ T

0
Kk ,k(α+2/r2)−1dtds

= T2Kk ,k(α+2/r2)−1.

Appendix B: Stationary regimes for the time series models

B.1. Model 1 is stationary

In this section, we check that (frac(γn))n∈N is stationary. It is sufficient to show that for any K ≥ 1,
(frac(γ0), . . . ,frac(γK )) ∼ (frac(γn), . . . frac(γn+K )), for any n ≥ 0. We write

(frac(γn), . . . frac(γn+K )) = frac(frac(γ0 +

n−1∑
r=0

Vr ) + frac(0,Vn, . . . ,

n+K−1∑
r=n

Vr )),

and we analyze the two terms separately. Here, frac is applied component–wise. First, because (Vn)n∈N
are i.i.d,

(∑k
r=0 Vr

)
∼
(∑n+k

r=n Vr
)

, for any n, k ∈ N. Thus (0,V0, . . . ,
∑n−1

r=0 Vr ) ∼ (0,Vn, . . . ,
∑n+K−1

r=n Vr ). It

also remains true when we apply frac component–wise, because it is a measurable mapping RK+1 →
R
K+1. Second, we claim the following lemma on the sum of two random variables, one of which is

uniform.

Lemma B.1. If U ∼ U([0,1]) and Z is a real–valued random variable independent of U, then
frac(U + Z) ∼ frac(U) ∼U.

Before showing Lemma B.1, we conclude the proof by applying it to U = γ0 and Z =
∑n−1

r=0 Vr .
Indeed, γ0 is independent from (Vr )n−1

r=0 , so we obtain that frac(γ0) ∼ frac(γ0 +
∑n−1

r=0 Vr ). Finally, com-
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bining the above with frac((0,V0, . . . ,
∑n−1

r=0 Vr )) ∼ frac((0,Vn, . . . ,
∑n+K−1

r=n Vr )), we have that frac(γ0, . . . ,
γK ) ∼ frac(γn, . . . ,γn+K ).

Proof of Lemma B.1. First, it is clear that for s ≤ 0, P(frac(U + Z) < s) = 0 and that for s > 1, 1 ≥
P(frac(U + Z) < s) ≥ P(frac(U + Z) ≤ 1) = 1. For 0 < s < 1,

P(frac(U + Z) ≤ s) = P

(
U + Z ∈

⋃
k∈Z

[k, k + s]
)
=
∑
k∈Z

P(U + Z ∈ [k, k + s]). (30)

Because U and Z are independent, P(U + Z ∈ [k, k + s]) = (μU � μZ )([k, k + s]), where μU and μZ are
the probability measures of U and Z respectively and � denotes their convolution. Note that since μ is
translation–invariant,

(μU � μZ )([k, k + s]) =
∫
R

∫ 1

0
1[k ,k+s](z + u)dudμZ (z)

=

∫
R

μ([0,1] ∩ [k − z, k + s − z])dμZ (z)

=

∫
R

μ([−k,−k + 1] ∩ [−z,−z + s])dμZ (z)

=

∫
R

μ([−k,−k + 1[∩[−z,−z + s])dμZ (z).

Going back to (30),

P(frac(U + Z) ≤ s) =
∑
k∈Z

∫
R

μ([−k,−k + 1[∩[−z,−z + s])dμZ (z)

=

∫
R

∑
k∈Z
μ([−k,−k + 1[∩[−z,−z + s])dμZ (z)

=

∫
R

μ([−z,−z + s])dμZ (z)

= μ([0, s])
∫
R

dμZ (z).

= s.

Therefore, the distribution function of frac(U + Z) is uniform on [0,1] and therefore also equal to that
of frac(U).

B.2. Stationary distribution for Model 2

The process (frac(γn))n∈N is defined in (22), via the Markov chain (Vn)n∈N. Recall that this Markov
chain has a transition probability kernel P, with support included in I = [vmin,vmax]. The time series
(frac(γn))n∈N is not itself a Markov Chain but it can be easily checked that (frac(γn),Vn)n≥1 is. Let
P̃ be the transition kernel of this Markov Chain and let U be the uniform measure on [0,1] × I. By
applying a similar proof as the proof of Doeblin’s Condition for Model 2, see Section B.2 step 8 in
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the supplement Chazal, Michel and Reise (2025), it can be shown that for any x ∈ [0,1] × I, whenever
A ∈ B([0,1] × I) is such that U(A) > 0, then Pn(x,A) > 0 for some n sufficiently big. In other terms,
the Markov Chain (frac(γn),Vn)n≥0 is U-irreducible.

By Proposition 4.2.2 Meyn and Tweedie (2012), there is a maximal measure, Q, for which
(frac(γn),Vn)n≥0 is Q-irreducible. By Theorem 8.3.4 in Meyn and Tweedie (2012), such a maximally-
irreducible chain is either transient or recurrent. The fact that we can reach any element from the cover
from any other one, as well as the compacity of the domain [0,1] prevents transience, so we can con-
clude it is recurrent. A recurrent chain admits an invariant measure, by Theorem 10.0.1 Meyn and
Tweedie (2012).

Appendix C: Gaussian approximation for dependent data

Theorem C.1 (Kosorok (2008, Theorem 11.24)). Let (Xn)n∈N ⊂ Rd be a stationary sequence and
consider a functional family F = (Ft )t∈U with finite bracketing entropy. Suppose there exists r ∈]2,∞[,
such that

∞∑
k=1

k
2

r−2 βX (k) <∞. (31)

Then,
√

N(F̂t − Ft ) converges to a tight, zero–mean Gaussian G process with covariance (27).

Theorem C.2 (Bühlmann (1995, Theorem1)). Let (Xn)n∈N ⊂ Rd be a stationary sequence and con-
sider a functional family F = (Ft )t∈U with finite bracketing entropy. Suppose that βX (k) −−−−→

k→∞
0 de-

crease exponentially and that F satisfies (6,8). Let the bootstrap sample be generated with the Mov-
ing Block Bootstrap, where the block size L(n) satisfying L(n) → ∞ and L(n) = O(n1/2−ε ) for some
0 < ε < 1/2. Then,

√
N(F̂∗

N − E∗[F̂∗
N ]) →

∗ G in probability,

where G is the zero-mean Gaussian Process with the covariance (27).

Acknowledgments

The authors are grateful to numerous colleagues for the fruitful discussions and they wish to particularly
thank Paul Doukhan, Giovanni Peccati, Alex Delalande, Quentin Mérigot and Daniel Perez.

Funding

WR was supported by TopAI ANR–19–CHIA–0001 and BM by GeoDSIC ANR-22-CE40-0007.

Supplementary Material

Supplement to “Topological signatures of periodic-like signals” (DOI: 10.3150/24-BEJ1793SUPP;
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