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Magnetic signal for vehicle navigation

Advanced navigation systems estimate the position of a vehicle by aggregating estimates from different sensors:

I GPS,

I inertial sensors (accelerometer, gyrometer).

Adding position or movement information based on measurements from other, independent sensors can lead to
an improvement in the resulting estimation.

The magnetic field measured inside a moving car is the Earths’ field perturbed by quantities
+ related to the movement of the car

I the heading of the vehicle,
I the rotations of the wheels,
I the revolutions of the engine,

- those independent thereof
I passing vehicles,
I high–voltage installations,
I infrastructure.
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Model of the magnetic field

Let S : [0,T ]→ R3 be the magnetic field measured by a sensor inside a vehicle. Assuming that the Earths’
magnetic field is constant (locally),

S(t) = ψθ(t)(γ(t)) + W (t), (1)

where

1. ψθ is the (periodic) perturbation induced by the position of the wheels γ,

2. θ is the heading,

3. W represents noise (sensor noise, passing vehicle or electric infrastructure).

We can estimate γ by studying the periodic structure of S . In1, we developed a method to count the number of
oscillations.
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1Thomas Bonis et al. (May 2022). “Topological Phase Estimation Method for Reparameterized Periodic Functions”. In: doi:
10.48550/arXiv.2205.14390.

https://doi.org/10.48550/arXiv.2205.14390
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The periodic function depends on the environment
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Mathematical problem statement

Consider S = ψ ◦ γ + W , where

I ψ : R→ R is 1–periodic,

I γ : [0,T ]→ [0,R] an increasing bijection (random), γ ∼ ν,

I W : [0,T ]→ R is a continuous stochastic process, W ∼ µ.
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Aim
Construct a signature of ψ from S.
Test for ψ1 = ψ2, based on observations S1, S2, where Sk is as above, with Wk ∼ µ and γk ∼ νk .
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Prior work and context

The problem of comparing (populations of) curves, up to reparametrisation and constructing their
representations is tackled shape analysis through methods of two types:

1. find reparametrisations, which align curves and then do standard statistics (mostly, calculate means)2,

2. Frechet mean for a specific metric, Square Root Velocity (SRV)3.

The models present limitations

1. Both methods are relevant when the signal has the same length, for example: growth curves, migration of
birds.

2. The phase variations are “small”.

In addition, the object of interest is a curve representative of the population of curves.

Our idea is based on topological summaries

1. Statistics on prominent local extrema - no need to know how many cycles we observe.

2. Generic asymptotic results for independent and dependent data.

3. In contrast to standard methods on time series, it is invariant to reparametrisation.

2J. S. Marron et al. (Nov. 2015). “Functional Data Analysis of Amplitude and Phase Variation”. In: Statistical Science 30.4, pp. 468–484. issn:
0883-4237. doi: 10.1214/15-STS524. arXiv: 1512.03216.

3A Srivastava et al. (July 2011). “Shape Analysis of Elastic Curves in Euclidean Spaces”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 33.7, pp. 1415–1428. issn: 0162-8828. doi: 10.1109/TPAMI.2010.184.

https://doi.org/10.1214/15-STS524
http://arxiv.org/abs/1512.03216
https://doi.org/10.1109/TPAMI.2010.184
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Topological signatures
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Persistence diagram of sublevel sets

The persistence diagram D(S) of sub level–sets of a continuous function S : [0,T ]→ R is a point measure
defined on the upper half–plane ∆+ above ∆ := {x = y}4.
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The persistence diagram captures the height and order of local extrema.

4Frédéric Chazal et al. (2016). The Structure and Stability of Persistence Modules. SpringerBriefs in Mathematics 2191-8198. Springer, Cham.
isbn: 978-3-319-42543-6.
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Properties of the persistence diagram

Proposition (Invariance to reparametrisation)

For any two increasing bijections γ1, γ2 : [0,T ]→ [0,R],

D(ψ ◦ γ1) = D(ψ ◦ γ2). (2)

In addition, there exists c ∈ [0, 1], such that for any N ∈ N,

D(ψ|[c,c+N]) = ND(ψ|[c,c+1]). (3)

=⇒ the order and height of extrema characterize the persistence diagram
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Properties of the persistence diagram: stability

Proposition (Stability Theorem5)

For any W : [0,T ]→ R,
dB (D(ψ ◦ γ + W ),D(ψ ◦ γ)) ≤ ‖W ‖∞. (4)
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The persistence of a point (b, d) is w(b, d) = d − b. The greater its persistence, the more prominent the
extrema that generated it.

5Frédéric Chazal et al. (2016). The Structure and Stability of Persistence Modules. SpringerBriefs in Mathematics 2191-8198. Springer, Cham.
isbn: 978-3-319-42543-6.
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Normalized functional representations

The space of multisets lacks mathematical structure6. It is common to use vectorisations7, especially in a
statistical learning context.

Persistence Silhouette8

The persistence silhouette of D is

ρ·(D) : t 7→
∑

x∈D wε(x)pΛx (t)∑
x∈D wε(x)p

, (5)

where Λ(b,d)(t) = max(0,min(t − b, d − t)) and wε(b, d) = max(d − b− ε, 0). b b + d
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6Henry Adams and Michael Moy (May 2021). “Topology Applied to Machine Learning: From Global to Local”. In: Frontiers in Artificial
Intelligence 4, p. 668302. issn: 2624-8212. doi: 10.3389/frai.2021.668302.

7Mathieu Carrière et al. (Mar. 2020). “PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures”. In:
arXiv:1904.09378 [cs, math, stat]. arXiv: 1904.09378 [cs, math, stat]; Henry Adams et al. (Jan. 2017). “Persistence Images: A Stable Vector
Representation of Persistent Homology”. en. In: The Journal of Machine Learning Research 18.1, pp. 218–252; Peter Bubenik (Jan. 2015).
“Statistical Topological Data Analysis using Persistence Landscapes”. en. In: Journal of Machine Learning Research 6, pp. 77–102.

8Frédéric Chazal et al. (2014). “Stochastic Convergence of Persistence Landscapes and Silhouettes”. en. In: Annual Symposium on
Computational Geometry - SOCG’14. Kyoto, Japan, pp. 474–483. (Visited on 03/05/2021).

https://doi.org/10.3389/frai.2021.668302
http://arxiv.org/abs/1904.09378
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Projections of diagrams

For U > 0, let πU : ∆≥0 → ∆≥0 be the operator which projects points above the diagonal, onto the upper
half-square with corner at (−U,U)

πU : ∆≥0 → ∆≥0

(x , y) 7→ (x , y) + (1,−1) min(max(y − U,−U − x , 0), y−x
2

).
(6)

(−U,U)

x
l u

Silhouettes of projected diagrams

Fix U > 0 and set ρU
t := ρt ◦ πU . Then, F = (ρU

t )t∈[−U,U]

1. has bounded support,

2. is Lipschitz with respect to t (uniformly in D)

∀D, |ρU
t1

(D)− ρU
t2

(D)| ≤ |t1 − t2|, ∀t1, t2. (7)
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Topological signature
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Finally, we define
F (S) : t 7→ E[ρt (πu(D(S)))]. (8)



Motivation and problem statement Topological signatures Properties of the limit representation Invariance to reparametrisation Estimation Numerical illustration

Limit in the number of observed periods

Theorem
There exists c ∈ [0, 1] such that∥∥∥ρt (D(ψ|[0,R]))− ρt (D(ψ|[c,c+1]))

∥∥∥
∞
−−−−→
R→∞

0. (9)

Idea behind the proof

When W = 0, the D(ψ|[0,R]) = bR − 2cD∗ + D′.

In addition, persp
p,ε(D) = bR − 2cpersp

p,ε(D∗) + persp
p,ε(D′), so

ρ(D(ψ|[0,R])) = ρ(D∗) + O

(
1

bR − 2c

)
.

Since we normalize, by the total number of oscillations we observe an increasing number of periods, the
signature converges.

Justifies the terminology the signature of ψ.



Motivation and problem statement Topological signatures Properties of the limit representation Invariance to reparametrisation Estimation Numerical illustration

Limit in the number of observed periods

Theorem
There exists c ∈ [0, 1] such that∥∥∥ρt (D(ψ|[0,R]))− ρt (D(ψ|[c,c+1]))

∥∥∥
∞
−−−−→
R→∞

0. (9)

Idea behind the proof

When W = 0, the D(ψ|[0,R]) = bR − 2cD∗ + D′.

In addition, persp
p,ε(D) = bR − 2cpersp

p,ε(D∗) + persp
p,ε(D′), so

ρ(D(ψ|[0,R])) = ρ(D∗) + O

(
1

bR − 2c

)
.

Since we normalize, by the total number of oscillations we observe an increasing number of periods, the
signature converges.

Justifies the terminology the signature of ψ.



Motivation and problem statement Topological signatures Properties of the limit representation Invariance to reparametrisation Estimation Numerical illustration

Limit in the number of observed periods

Theorem
There exists c ∈ [0, 1] such that∥∥∥ρt (D(ψ|[0,R]))− ρt (D(ψ|[c,c+1]))

∥∥∥
∞
−−−−→
R→∞

0. (9)

Idea behind the proof

When W = 0, the D(ψ|[0,R]) = bR − 2cD∗ + D′.

In addition, persp
p,ε(D) = bR − 2cpersp

p,ε(D∗) + persp
p,ε(D′), so

ρ(D(ψ|[0,R])) = ρ(D∗) + O

(
1

bR − 2c

)
.

Since we normalize, by the total number of oscillations we observe an increasing number of periods, the
signature converges.

Justifies the terminology the signature of ψ.



Motivation and problem statement Topological signatures Properties of the limit representation Invariance to reparametrisation Estimation Numerical illustration

Discriminating periodic functions

Linear transformations
Let ψ2 = aψ1 + θ, for some a > 0 and θ ∈ R. Then,

ρt (D(ψ2)) = aρ(t−θ)/a(D(ψ1)). (10)

Small bumps

Suppose that T = 8.5 and that γ(t) = t + c, for c ∼ U([0, 1]). S = ψ ◦ γ + W , where W has covariance

(s, t) 7→ σ2 exp(− (s−t)2

2`2 ), with ` = 0.3 and σ = 1/3.
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Confusing certain functions

Certain different periodic functions have the same persistence diagram and so the same functional.

D


0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0
A period of f1


= D


0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0
A period of f2


In particular, f1 looks like periods of a function, and it has the same diagram as f2.
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Invariance to γ

The parametrisation γ : [0,T ]→ [0,R] represents a trajectory, from x0 = 0 to x1 = R. We would like ρ to be
the same, regardless of the trajectory from x0 to x1.
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It is the case when W = 0, by Proposition 1.

Bias in the noisy case

In the extreme case of high noise, different time-scales lead to a bias
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Stability with respect to the distribution of γ

Noise
We assume that W is

1. has Hölder–continuous paths,

2. uniformly bounded by (maxψ −minψ − ε)/2.

Reparametrisations

Consider γ1 ∼ ν1 and γ2 ∼ ν2. We assume

1. same, fixed endpoints: γ1(0) = γ2(0) and γ1(T ) = γ2(T ).

2. that there exists vmin > 0, such that vmin|t − s| ≤ |γ(t)− γ(s)|, for γ = γ1, γ2.

Consider γ1 ∼ ν1 and γ2 ∼ νk .

Theorem
Under the assumptions above, the signature is Hölder–continuous with respect to µ

‖F (ψ ◦ γ1 + W )− F (ψ ◦ γ2 + W )‖ ≤
Lk

(
1 + 4pUCψ,µ

)
CW

vmin
W1,‖·‖∞ (ν1, ν2)α. (11)

Cψ,µ = maxk
pers

p−1
p−1,ε(ψ◦γ+Wk )

pers
p
p,ε(ψ◦γ+Wk )

, CW = E[Poly(ΛW )], with Poly(0) = 0.
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Estimation of the signature from time series

In practice, we observe a time series (Sn)N
n=1,

Sn = ψ(γ(tn)) + W (tn). (12)

Can we estimate a signature of the process from these observations?

Let X be a window of length M from S. We estimate F (X ) using the empirical mean F̂ , calculated on blocks
X1, . . .XN−M+1 from S

Xn = (Sn, . . . Sn+M−1).

1. F (X ) and F (S) are similar, if W = 0, by Theorem 1.

2. Is F̂ a good approximation of F (X )?

Remark
We can compute ρ((S)N

n=1), but it is not the signature. It has a higher variance: global minimum paired with
global maximum.
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Functional Central Limit Theorem: i.i.d.observations

Theorem (Gaussian approximation for empirical processes9)

Suppose that X1, . . . ,XN−M+1 ∼ X are i.i.d.time series. Then,

√
N −M + 1(F̂ − F (X ))→ G in distribution, (13)

where G is a Gaussian process with E[Gt ] = 0 and covariance

(s, t) 7→ E[ρtρs ]− E[ρs ]E[ρt ].

In addition, the bootstrap with replacement approximates the limiting distribution, that is√
N −M + 1(F̂∗N−M+1 − F̂N−M+1) converges to G.

=⇒ confidence bands and control of type I error in statistical tests!

9Frédéric Chazal et al. (2014). “Stochastic Convergence of Persistence Landscapes and Silhouettes”. en. In: Annual Symposium on
Computational Geometry - SOCG’14. Kyoto, Japan, pp. 474–483. (Visited on 03/05/2021).
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Dependent observations

There are two levels of dependence in X1,X2, . . . ,XN

1. Shared elements: (X1)5 = S5 = (X4)2.

2. Dependence in (Sn)n:
2.1 γn+1 might not be independent from γn.
2.2 Same for W .

Model
We assume that γ is a Markov Chain, whose first order difference is a Markov Chain, with non-degenerate
transitions.

Example

Consider (Vn)n≥0 be a Markov Chain on R with

I bounded support [vmin, vmax],

I absolutely continuous transition kernel.

Then, let γn+1 = γn + ∆tVn.
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Functional Central Limit Theorem: dependent observations

Noise
Assume that

1. W is uniformly bounded by (maxψ −minψ − ε)/2.

2. There exists K ∈ N such that Wn is independent of Wn+k , for any k ≥ K .

Reparametrisation

Fix M > 2
vmin

, where vmin > 0 is such that vmin|t − s| ≤ |γ(t)− γ(s)|.

Theorem (In progress)

Then,
√

N −M + 1(F̂ (t)− F (t)) converges to a tight, zero–mean Gaussian process Gd with covariance

(s, t) 7→ lim
k→∞

∞∑
n=1

cov(ρ(Xk )(s), ρ(Xn)(t)). (14)

Then, if L(N)→∞ and L(N) = O(N1/2−ε) for some ε > 0, as N →∞,

√
N −M + 1(F̂∗ − F̂ )→∗ Gd (t) in probability,
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Idea of the proof

For simplicity, assume that the period of ψ is 1.

1. Only the fractional part of (γn)n matters: ψ(frac(γ)) = ψ(γ).

2. Under the Markov Chain assumptions, (frac(γn))n is β-mixing, with exponential decay rate.

3. By measurability of x 7→ ψ(x) + W , (Sn)n≥0 is also mixing.

4. Apply functional CLTs for β-mixing data10 (control the covering number of Ft with respect to ‖ · ‖∞).

10Michael R. Kosorok (2008). Introduction to Empirical Processes and Semiparametric Inference. en. Springer Series in Statistics. New York, NY:
Springer New York. isbn: 978-0-387-74977-8 978-0-387-74978-5. doi: 10.1007/978-0-387-74978-5. url:
http://link.springer.com/10.1007/978-0-387-74978-5 (visited on 10/18/2021); Dragan Radulović (Dec. 1996). “The Bootstrap for Empirical
Processes Based on Stationary Observations”. In: Stochastic Processes and their Applications 65.2, pp. 259–279. issn: 0304-4149. doi:
10.1016/S0304-4149(96)00102-0; Emmanuel Rio (2017). Asymptotic Theory of Weakly Dependent Random Processes. Springer. doi:
10.1007/978-3-662-54323-8.

https://doi.org/10.1007/978-0-387-74978-5
http://link.springer.com/10.1007/978-0-387-74978-5
https://doi.org/10.1016/S0304-4149(96)00102-0
https://doi.org/10.1007/978-3-662-54323-8
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Moving Block Bootstrap

Define windows (Xn)N−M+1
n=1 as

Xn = (Sn, . . . Sn+M−1).

Let L = L(N −M + 1) be a block size

1. F̂ = 1
N−M+1

∑N−M+1
n=1 ρ(Xn).

2. Let Yn = (Xn, . . . ,Xn+L), for n = 1, . . . ,N −M + 1− L.

3. Let B such that LB = N + M − 1

4. For nb = 1, . . . , nbootstrap,
4.1 Sample K1, . . . ,KB ∼ U([1,N −M + 1− L])
4.2 Obtain YK1

, . . .YKB
, that is

XK1
, . . .XK1+L, XK2

, . . . ,XK2+L, XK3
, . . . ,XKB−1+L, XKB

, . . . ,XKB +L.

4.3 Calculate F̂∗nb
= 1

N−M+1

∑N−M+1
n=1 ρ(X∗n ).

5. Calculate some statistics T (F̂∗1 , . . . , F̂
∗
nbootstrap

, F̂ ).
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Hypothesis testing: S1 vs S2

Setting

For k = 1, 2, we generate (Sk
n ) = ψk (γn) + Wn.

I (Wn)n ∼ µ Gaussian, with covariance (n1, n2) 7→ exp(−(n1 − n2)2/(2τ2)), with τ = 0.008.

I γ ∼ νk a Markov Chain of order 3 (acceleration a random walk).

I V ∈ [5m/s, 10m/s]

We have T = 300s, and N = T/dt, with dt = 50.

We test for
H0 : S1 = S2 vs H1 : S1 6= S2.
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Signatures for µ1 6= µ2

For k = 1, 2, we generate (Sk
n ) = ψk (γk

n ) + Wn.

I (Wn)n ∼ µ Gaussian, with covariance (n1, n2) 7→ exp(−(n1 − n2)2/(2τ2)), with τ = 0.008.

I γ ∼ νk a Markov Chain of order 3 (acceleration a random walk).

I V 1 ∈ [5, 10], V 2 ∈ [20, 30]
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We show samples of X k for a fixed value of M = 5s and the same ψ below.
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Signatures for µ1 6= µ2

Choice of M
Since we observe a different number of periods in a window of fixed length, the choice of M matters! We
inspect the silhouette for different values of M for ν1.
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Test for ψ1 = ψ2

We fix M = 10. The null hypothesis is always rejected - confidence bands too small.
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Hypothesis testing: real data

Setting

Scenarios (Segment, direction, Speed), where

I Segment ∈ {A,B},
I Direction ∈ {+,−}
I Speed ∈ {10, 30, 50} (km/h).

Sample size Description Example
H0 12 same scenario and direction, but different speed (A, +, 10) vs (A, +, 30)
H1 66 different scenario or direction (A, +, 10) vs (B, +, 30)

Results

Positive Negative
H0 1/3 2/3
H1 1 0

The test is too sensitive: 33% false positives, despite a desired level of 0.5%.

I Attenuation is visible, even with a high sampling rate (125Hz).

I Perturbations of the pattern: signature of traversing a bump different depends on the angular position of
the wheel.
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Conclusions and future work

Conclusion
We propose topological signatures, F , as invariants of periodic-like processes. We showed that these signatures

1. are invariant to the distribution of reparametrisation, in the noiseless and noisy scenarios,

2. can be estimated from time-series data.

Perspectives

1. Generalize Theorem 1 (convergence of ρ) to W 6= 0.

Difficulty: describe D(ψ + W ) based on D(ψ) and W .

2. Refine Proposition 1 (continuity with respect to ν ∼ γ) to different numbers of periods.

Difficulty: Describe D(S) based on the knowledge of diagrams on sub-intervals.

3. Study the choice of the window length M, as a function of the number of samples.

4. Application: what it works on?
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