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Data with phase variation

Signals with phase variation

A sample S1, . . . , SN : [0, 1]→ X has phase variation if

Sn = f (γn) + Wn, for each n ∈ {1, . . . ,N}, (1)

where γ1, . . . , γN : [0, 1]→ [0, 1] are increasing homeomorphisms, f : [0, 1]→ X is continuous and
Wn : [0,T ]→ R is a noise process.

Litterature
I Curve registration: estimating γn ◦ γ−1

n′ (Tang and Muller
2008, Zhao and Itti 2018 )

I Computing a representative of f (Su et al. 2014)

I Clustering of S1, . . . , Sn (Srivastava et al. 2011)

See Marron et al. 2015 for a review.

Fixed endpoints assumption

For all 1 ≤ n ≤ N,

γ1(0) = γn(0),

γ1(1) = γn(1).
(2)

Source: Srivastava et al. 2011.
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Periodic data with phase variation

Definition

We call S : [0, 1]→ X a periodic function with phase variation if

S(t) = φ(γ(t)) + W (t) (3)

where φ : R→ X is 1-periodic, γ : [0, 1]→ [0,R] is an increasing homeomorphism and W : [0, 1]→ X
is a noise process.
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Example (Instantaneous phase estimation,Boashash, O’Shea, and Arnold 1990)

Decompose s(t) = a(t) cos(γ0(t)) into an amplitude a(t), and a phase-variation component
γ0(t) = arctan(H(s(t))/s(t)).
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Topological data analysis for periodic time series

We study S using persistent homology, a technique from Topological Data Analysis (TDA).

Contributions

We describe the structure of a topological descriptor of φ ◦ γ. (Chapter 3)

Let S be a periodic function with phase variation.

1. We propose an estimator of γ from S , (Chapter 5)

2. We construct a descriptor of φ from S . (Chapter 4)

TDA for time series

I Detecting periodicity in a time series (Perea 2019),

I Detecting financial crashes (Gidea and Katz 2018)

I Robust zero-crossings (Khasawneh and Munch 2018; Tanweer, Khasawneh, and Munch 2023),

I Analysis of gate signals for the study of multiple sclerosis (Bois et al. 2022).
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Persistence diagram of sub level sets

Intuition

The persistence diagram D(f ) of a continuous function f : [0,T ]→ R is a multi-set of points in R2,
which reflect when connected components appear and merge in (f −1(]−∞, t]))t∈R as t increases.
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Definition (Chazal et al. 2016)

For each t ∈ R, we calculate H0(Xt), where Xt := f −1(]−∞, t]). For any s ≤ t, the inclusion Xs → Xt

gives a map ιts : H0(Xs )→ H0(Xt), and the ranks of (ιts )s≤t define D(f ).
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Stability: bottleneck distance

Definition (Bottleneck distance)

We call a ε-matching between two persistence diagrams D and D ′ a bijection Γ : A→ A′ between
some subsets of A ⊂ D and A′ ⊂ D ′, considered with multiplicity, if

d∞(a, Γ(a)) ≤ ε, for any a ∈ A,

d∞(a,∆) ≤ ε, for any a ∈ (D \ A) ∪ (D ′ \ A′).

where ∆ = {(x , x) ∈ R2} denotes the diagonal.

dB (D,D ′) := inf{ε > 0 | Γ is an ε-matching between D ′ and D ′}.

Theorem (Bottleneck stability, Edelsbrunner and Harer 2010)

Let f , g : X→ R be two continuous functions on a compact space X. Then,

dB (D(f ),D(g)) ≤ ‖f − g‖∞.
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Total p-persistence

Definition (Total persistence)

The persistence of (b, d) ∈ D is d − b. The total p-persistence of a diagram D is

persp(D) :=

 ∑
(b,d)∈D

(d − b)p

1/p

.

Proposition (Plonka and Zheng 2016, Perez 2022)

For p = 1,
pers1(D(f )) + pers1(D(−f )) = TV (f ).

If f is α-Hölder for p > 1 + 1/α, then, persp(D(f )) <∞.
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Persistence diagrams of periodic functions

Let φ : R→ R be a 1-periodic function and denote by φ|[a,b] the restriction of φ to an interval [a, b].

Proposition (Invariance to reparametrisation)

Let γ : [0, 1]→ [0, 1] be an increasing homeomorphism. Then, D(φ ◦ γ) = D(φ|[0,1]).

Theorem (Additivity of persistence diagrams for periodic functions)

For R ∈ N∗, there exists c ∈ [0, 1] such that

D(φ|[0,R]) = RD(φ|[c,c+1]). (4)

For any R > 1,

D(φ|[0,R]) = bR − 1cD(φ|[c,c+1]) + D ′, with persp(D ′) ≤ 2persp(D(φ|[c,c+1])). (5)

Conclusion

The persistence diagram D(φ ◦ γ) contains information about

I extrema of φ,

I number of periods (γ(1)− γ(0)).
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Proof of (5)

c-1 0 c c + n c + N R c + N + 1

10

0

10

Proof.

Let c := inf{x ∈ [0, 1[| φ(x) = maxφ}, N = max{n ∈ N | c + n ≤ R} and denote by
Xt := φ−1([−∞, t[).
Step 1: For any t < M, Xt ∩ [0, c] ∩ [c, c + 1] = ∅, so

H0(Xt ∩ [0,R]) ' H0(Xt ∩ [0, c])⊕ H0(Xt ∩ [c, c + N])⊕ H0(Xt ∩ [c + N,R])), (6)

Step 2: similarly,

H0(Xt ∩ [c, c + N]) '
N⊕

n=1

H0(Xt ∩ [c + (n − 1), c + n]) (7)

(x 7→ x + n) '
N⊕

n=1

H0(Xt ∩ [c, c + 1]) (8)

Step 3: The inclusion [0, c] ⊂ [c − 1, c] induces an injective morphism

H0(Xt ∩ [0, c]) ↪→ H0(Xt ∩ [c − 1, c]).
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Phase estimation

Setting

Consider S a periodic function with phase variation

S : [0,T ] → R
t 7→ φ(γ(t)) + W (t),

where

1. φ : [0, 1]→ R is 1-periodic and unknown,

2. γ : [0,T ]→ [0,N] with N ∈ N unknown,

3. W : [0,T ]→ R is a continuous noise process.

Goal: Given S , estimate γ.

Proposed solution: segmenting the curve into periods

1. Estimate N using D(S).

2. Find t1 < . . . < tN such that γ(tn)− γ(tn−1) = 1 for all n = 2, . . . ,N.

Let γ̂ : [0,T ]→ R∗ be such that γ̂(tn) = n and interpolate.
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Developed and studied in (Bonis et al. 2022). 12 / 30
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Estimation of N: noiseless setting

We will denote by D(S)(A) the number of points from D(S)
that are in A ⊂ {(x , y) ∈ R2 | y − x > 0}.

N̂(S) := gcd{D(S)(x) | x in supp(D(S))}.
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Proposition

Assume W = 0, so S = φ ◦ γ with γ : [0,T ]→ [0,N]. For any A ⊂ R2,

D(φ ◦ γ)(A) = ND(φ|[0,1])(A). (9)

In particular,
N̂(φ ◦ γ) = NN̂(φ|[0,1]).
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Estimation of N: correctness in the noiseless setting

Identifiability

There exists a 1-periodic function g such that D(g |[0,1]) = D(φ|[0,1])/N̂(φ|[0,1])!
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Non-degeneracy

We say that φ is non-degenerate if N̂(φ|[0,1]) = 1.

Example

If φ has at least one unique critical value, it is non-degenerate.

Corollary

When φ is non-degenerate, N̂(φ ◦ γ) = N.
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Estimation of N: noisy signal

For the noisy signal S = φ ◦ γ + W , the points in D(S) have multiplicity 1.

Estimator

For τ > 0, we define

N̂τ (S) := gcd{|D(S)(B(x , τ))| | x ∈ D(S), pers(x) > τ}. (10)
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Separation constant

The separation constant is the smallest distance between points
in D(φ),

δφ := min(d(x1, x2), d(x1,∆) | x1, x2 ∈ D(φ)).
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Proposition (Stability)

If φ is non-degenerate, then for any τ > 0 such that 2‖W ‖∞ < τ < δ/3, we have

N̂τ (S) = N.
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Estimation of γ

Persistent minima

Let τ > 0 and Ĉτ = {t1, . . . , tM} ⊂ [0,T ] be the set of
local minima of S , corresponding to points in the diagram
with persistence more than τ .
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Proposition

If τ ∈]2‖W ‖∞, δ/3[, then, for some K ∈ N,

|Ĉτ | = NK .

For each k ∈ {1, . . . ,K}, we can define an estimator of γ

γ̂ : [0,T ] → R
t 7→ ∑N

n=1 1t(n−1)K+k≤t .
(11)

0.0 0.2 0.4 0.6 0.8 1.0
4

2

0

2

4

0.00 0.25 0.50 0.75 1.00
0

1

2

3

k = 1
k = 2
k = 3

16 / 30



Additivity of persistence diagrams of periodic functions Segmentation of periodic signals and phase estimation Signatures of periodic signals with phase variation

Zero-crossings1

Let K := |φ−1(α) ∩ [0, 1[| and assume that 0 < K <∞, for some α ∈ R.

Estimation of N

If K is known, Nα(S) := |S−1(α)|
K

is an estimator of N.

0 t1 t1 + K t1 + 2K 1
4
2
0
2
4

Segmentation of the signal

If S−1(α) = {t1, . . . , tNK}, then γ(tn+k )− γ(tn) = 1 for 1 ≤ k ≤ K and n ≤ NK − k.

Issues

- K is not known (and not necessarily finite),

- Nα is not stable. (Tanweer, Khasawneh, and Munch 2023)

1Boualem Boashash, Peter O’Shea, and Morgan Arnold (1990). “Algorithms for Instantaneous Frequency Estimation: A Comparative Study”. In: Advanced Signal Processing
Algorithms, Architectures, and Implementations. Vol. 1348. SPIE, pp. 126–148. doi: 10.1117/12.23471.
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Application: estimating the speed of a moving vehicle

Context

The magnetic signal measured in a car is
B(θ, θh) = Q(θh)BE +Bu(θ) ∈ R3, where θh is the orientation
of the vehicle and θ the angular position of a wheel2.
As the car moves, we observe S(t) = B(γ(t), γh(t)).

Source: Le Goff et al. 2012.

Proposed solution

Choose a vector v ∈ S2 and construct γ̂ for on S := 〈S, v〉. Estimate the speed by
(γ̂(t)− γ̂(t − t0))/t0, for some small delay t0.
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2Pierre-Jean Bristeau (2012). “Techniques d’estimation du déplacement d’un véhicule sans GPS et autres exemples de conception de systèmes de navigation MEMS”.
PhD thesis. Ecole Nationale Superieure des Mines de Paris
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Conclusion and future work

Conclusion
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Limitations and future work

1. Identifiability
I Use the order of local minima to lift the identifiability issue

2. More robust estimators

I Extend the guarantees to N̂c and N̂T

I Choose the sets to count multiplicity differently
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3. The method is applicable only to N ∈ N.
I In practice, it is not a problem as φ is often simple.
I Use the approximate greatest common divisor.
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Problem statement

Data

Consider S = φ ◦ γ + W , where
I φ : R→ R is 1–periodic,

I γ : [0,T ]→ R an increasing bijection,

I W : [0,T ]→ R is a cont. stoch. proc.

Aim

Given S , construct a signature of φ.
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Studied in Reise, Michel, and Chazal 2023.
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Functional representations of persistence diagrams

Defining a mean of a collection of persistence diagrams is not necessarily easy, so it is common to
compute statistics of diagrams in a functional space3.

Functional representation

Let H be a functional Banach space.

κ : R2 → H
(b, d) 7→ κ(b,d) : T → R

x 7→ κ(b,d)(x). b (b + d)/2 d
0

d b
2

b
0

d b

Persistence silhouette 4 Persistence image5

Definition

For p ≥ 1 and ε > 0, the ε-truncated p-persistence of (b, d) is w(d − b) = max(d − b − ε, 0)p. We
define the normalized functional of D as persistence-weighted average of κ,

ρ·(D) : T → R
x 7→

∑
(b,d)∈D w(d−b)κ(b,d)(x)∑

(b,d)∈D w(d−b)
.

(12)

3Frédéric Chazal and Bertrand Michel (2021). “An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists”. In: Frontiers in
Artificial Intelligence 4. issn: 2624-8212.

4Peter Bubenik (2015). “Statistical Topological Data Analysis Using Persistence Landscapes”. In: Journal of Machine Learning Research 16.1, pp. 77–102
5Henry Adams et al. (2017). “Persistence Images: A Stable Vector Representation of Persistent Homology”. In: The Journal of Machine Learning Research 18.1, pp. 218–252

22 / 30



Additivity of persistence diagrams of periodic functions Segmentation of periodic signals and phase estimation Signatures of periodic signals with phase variation

Proposed approach: normalized functionals of persistence
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F (S) := E[ρ(D(S))]. (13)

Properties of signatures

1. Consistency: thanks to the additivity of persistence,

ρ(D(φ|[0,R]))
‖·‖H−−−→ ρ(D(φ|[c,c+1])), as R →∞. (14)

2. Stability: when γ and W are random and independent, how does F (S) depend on the law of γ?

3. Estimation: how to estimate the signature from a sampled time series?
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Stability of the signature

A model for S

Let µ be a probability measure on (Γ0,R,vmin ,B(‖ · ‖∞)) for some vmin > 0, where

Γ0,R,vmin = {γ ∈ C([0,T ],R) | γ(0) = 0, γ(T ) = R, γ(s)− γ(t) ≥ vmin(s − t), for all s ≥ t}, (15)

Let ν be a probability measure on (C([0,T ],R),B(‖ · ‖∞)), such that

‖W ‖∞ ≤ (maxφ−minφ)/2− ε almost-surely, (16)

t 7→W (t) has an α-Hölder version. (17)

Let S := φ ◦ γ + W , where γ ∼ µ and W ∼ ν are independent.

Theorem

If µ1, µ2 are two probability measures on Γ0,R,vmin and Sk = φ ◦ γk + W , then

‖F (S1)− F (S2)‖H ≤ C

vαmin

W1(µ1, µ2)α, (18)

where W1 is the Wasserstein distance, and C depends on the regularity of W , ‖W ‖∞, ε, p and κ.

Comment

3 As c → 0, ‖F (φ ◦ γ1)− F (φ ◦ γ2 + cW )‖H → 0.

7 How to remove the fixed-endpoints assumption in (15)?
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Numerical examples: stability

φ1 6= φ2, µ1 = µ2,
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Numerical examples: stability

φ1 = φ2, µ1 6= µ2,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
6

4

2

0

2

4

6
=0.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
6

4

2

0

2

4

6
=0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10

5

0

5

10
=2.0

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0

1

2

3

4

5

6

7 0

1

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0

1

2

3

4

5

6

7

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0

2

4

6

8

25 / 30



Additivity of persistence diagrams of periodic functions Segmentation of periodic signals and phase estimation Signatures of periodic signals with phase variation

Estimation of signatures: introduction
Assume that only a single time series (Sn)N

n=1 ⊂ R is given,

Sn = φ(γ(tn)) + W (tn).

Can we estimate the signature?

Proposition (Chazal et al. 20146, Berry et al. 20187)

Let be D1, . . . ,DN i.i.d.persistence diagrams. When the (bracketing) entropy of (ρx )x∈T is finite,

√
N

(
1

N

N∑
n=1

ρ(Dn)− ρ∗
)

d−→ G, (19)

for a zero-mean stochastic process G.

Procedure

We fix M ∈ N and we generate S1, . . .SN−M+1, where

Sn = (Sn, . . . , Sn+M−1).

Challenge

S1, . . . ,SN−M+1 are not independent! Under what assumptions on (γ(tn))n∈N and (Wn)n∈N does an
analogue of (19) hold?

6Frédéric Chazal et al. (2014). “Stochastic Convergence of Persistence Landscapes and Silhouettes”. In: Annual Symposium on Computational Geometry - SOCG’14. Kyoto,
Japan: ACM Press, pp. 474–483. isbn: 978-1-4503-2594-3. doi: 10.1145/2582112.2582128

7Eric Berry et al. (2018). Functional Summaries of Persistence Diagrams. arXiv: 1804.01618
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Quantifying dependence

Definition (β-mixing coefficients, Dedecker et al. 2007)

Let (Xn)n∈Z be a stationary sequence of random variables on a common measurable space. Then,

βX (k) := sup
A,B

∑
A∈A,B∈B

|P(A ∩ B)− P(A)P(B)|,

where A ⊂ σX
−∞,0, B ⊂ σX

k,∞ are finite partitions of the sample space and σX
a,b := σ((Xn)a≤n≤b).

Proposition (Kosorok 2008)

If (ρx )x∈T has finite bracketing entropy and (Sn)n∈N is stationary with βS(k) = O(k−3), then

√
N

(
1

N

N∑
n=1

ρ(D(Sn))− ρ∗
)

d−→ Gdep, (20)

where Gdep is a zero-mean stochastic process.

Proposition

For k ≥ M + 1,

βS(k) ≤ βS (k −M + 1) ≤ βφ(γ)(k −M + 1) + βW (k −M + 1), (21)

and
βφ(γ)(k) ≤ βfrac(γ)(k),

where frac(x) := x − bxc.
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Model for (γn)n∈N

Random walk model

For some h > 0, we set
γn+1 = γn + hVn,

for (Vn)n∈N ∼ P i.i.d. We assume that

I supp(P) ⊆ [vmin, vmax] ⊂]0,∞[,

I for some c > 0 and a non-trivial interval I ⊂ [vmin, vmax],

P(A) ≥ cλ(A), for all A ∈ B(I ). (22)

Proposition

If γ0 ∼ U([0, 1]), then (frac(γn))n∈N is stationary and βfrac(γ)(k) = O(e−ak ) for some a > 0.

Idea of the proof

1. By Thm 1 in Section 2.4 of Doukhan 1995, it suffices to show the Doeblin condition:

There is µ0 and n0 ∈ N, such that for all n ≥ n0 uniformly in x0,

P(frac(γn) ∈ A | γ0 = x0) ≥ µ0(A).

2.
∑n

k=1 Vk ∼ P?n, with P?n lower-bounded by a uniform measure with growing support.

3. For n0 ∈ N big enough, the support is of length at least 1, and we obtain a lower–bound for the
distribution of frac(

∑n0
k=1 Vk ) on ]0, 1[.
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Conclusion and future work

Conclusion

F (S) is a stable signature of φ and can be estimated with standard techniques.

Limitations and future work

I Remove the assumption of fixed endpoints from the stability
I Technical difficulties in defining the probability measures
I Understand the distance between D(f |[0,T ]) and D(f |[0,t]) ∪ D(f |[t,T ])

I Numerical experiments to understand the discriminative power
I Compare with registration-based methods.
I Understand how the choice of the kernel
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Summary

Additivity of diagrams (chapter 3)
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Signatures of periodic functions (chapter 4)
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Persistence diagram of sub level sets: Definition

1. Persistence module

For each t ∈ R, we calculate H0(Xt), where Xt := f −1(]−∞, t]). For any s ≤ t, the inclusion Xs → Xt

gives a map ιts : H0(Xs )→ H0(Xt).

2. Rectangle measure

A measure m on rectangles of R2.

m(]a, b]× [c, d [) = dim

(
im(ιcb) ∩ ker(ιdc )

im(ιca) ∩ ker(ιdc )

)
,

3. Persistence diagram

The persistence diagram D(f ) is a multi-set in R2, where (s, t) ∈ R2 has multiplicity

m(s, t) = lim
δ→0+

m(]s − δ, s + δ]× [t − δ, t + δ[).
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Proof of additivity of sub level sets: details

Proof.

Let c := inf{x ∈ [0, 1[| φ(x) = maxφ}, N = max{n ∈ N | c + n ≤ R} and denote by
Xt := φ−1([−∞, t[).
Step 1: For any t < M, Xt ∩ [0, c] ∩ [c, c + 1] = ∅, so

H0(Xt ∩ [0,R]) ' H0(Xt ∩ [0, c])⊕ H0(Xt ∩ [c, c + N])⊕ H0(Xt ∩ [c + N,R])), (23)

Step 2: similarly,

H0(Xt ∩ [c, c + N]) '
N⊔

n=1

H0(Xt ∩ [c + (n − 1), c + n]) (24)

(x 7→ x + n) '
N⊔

n=1

H0(Xt ∩ [c, c + 1]) (25)

Step 3: The inclusion [0, c] ⊂ [c − 1, c] induces an injective morphism

H0(Xt ∩ [0, c]) ↪→ H0(Xt ∩ [c − 1, c]).
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Stability: bottleneck distance (detailed)

Definition (Edelsbrunner and Harer 2010, p. VIII.2)

We call a ε-matching between two persistence diagrams D and D ′ a bijection Γ : A→ A′ between
some subsets of A ⊂ D and A′ ⊂ D ′, considered with multiplicity, if

d∞(a, Γ(a)) ≤ ε, for any a ∈ A,

d∞(a,∆) ≤ ε, for any a ∈ (D \ A) ∪ (D ′ \ A′).

where ∆ = {(x , x) ∈ R2} denotes the diagonal.

dB (D,D ′) := inf{ε > 0 | Γ is an ε-matching between D ′ and D ′}.

Theorem (Bottleneck stability of diagrams)

Let f , g : X→ R be two continuous functions on a compact space X. Then,

dB (D(f ),D(g)) ≤ ‖f − g‖∞.
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Landmarks for multiple periods
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Zero-crossings from the persistence diagram

|S−1(α)| = 2 lim
δ→0+

|D(S) ∩ (]−∞, α− δ]× [α + δ,∞[)|.

0 t1 t1 + K t1 + 2K 1
4
2
0
2
4

Counting measure

The persistence diagram D is also a counting measure on rectangles A ⊂ ∆+ = {(b, d) ∈ R2 | x < y}.
By (4),

|D(φ ◦ γ) ∩ A| = N |D(φ|[0,1]) ∩ A|
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Application: magnetic odometry and speed estimation

Problem

Using the magnetic signal B, recorded in a moving car, estimate the
cars’ trajectory. The angular position t 7→ γ(t) of a wheel in time is
visible through S(t) = B(γ(t), γh(t))
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Proposed solution

1. S := 〈S, v〉, project S along a suitable direction v ∈ S2

2. N̂c,τ (S), for an appropriate scale τ ,

3. Derive an odometric sequence t1, . . . , tN̂τ (S) from Cτ .

4. Construct γ̂ : [0,T ]→ R.

Results
EO EI

Method Sv1 (∇S)v1 Sv1 (∇S)v1

N̂c,τ 15.75 16.66 3.02 3.01

N̂0,τ 15.75 16.66 3.02 3.01
ZC 9.91 5.62 6.35 16.51
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Normalized functionals of persistence

Functional representation
Let H be a functional Banach space

κ : R2 → H
(b, d) 7→ κ(b,d) : T → R

x 7→ κ(b,d)(x).

1. supp(κ(b,d)) ⊂ K , K bounded,

2. x 7→ κ(b,d)(x) (uniformly) Lipschitz,

3. ‖κ(b,d) − κ(b′,d′)‖H ≤ Lκ‖(b, d)− (b′, d ′)‖,
4. ‖κ(b,b)‖H ≤ C .

b (b + d)/2 d
0

d b
2

b
0

d b

Persistence silhouette8 Persistence image9

Normalized functionals of persistence diagrams

For some p ≥ 1 and ε > 0,

ρ(D) :=

∑
(b,d)∈D w(d − b)κ(b,d)∑

(b,d)∈D w(d − b)
, where w(d − b) = max(d − b − ε, 0)p. (26)

8Peter Bubenik (2015). “Statistical Topological Data Analysis Using Persistence Landscapes”. In: Journal of Machine Learning Research 16.1, pp. 77–102
9Henry Adams et al. (2017). “Persistence Images: A Stable Vector Representation of Persistent Homology”. In: The Journal of Machine Learning Research 18.1, pp. 218–252
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Mixing: overview

y = vmin

y = vmax

(u, v)
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Mixing: initial
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Mixing: boundary

y = vmin

y = vmax
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(u,v)

E D

15 / 16



References

Measures of dependence

Types of dependence

There are different ways to measure dependence in a time series (Xn)n∈N ⊂ X:

I m-dependence,

I strong-mixing,

−→ preserved by measurable functions!

I weak-dependence,

Strong mixing

The β-mixing coefficient of a time series (Xn)n∈N ⊂ X is

βX (k) = sup
A,B

∑
A∈A,B∈B

|P(A ∩ B)− P(A)P(B)|,

where A ⊂ σX
−∞,0, B ⊂ σX

k,∞ are finite partitions of the sample space and σX
a,b := σ((Xn)a≤n≤b).

Example

1. If (Xn)n is m-dependent, then βX (k) = 0 for k ≥ m.

2. Markov chains: irreducible and aperiodic.

Proposition

For any measurable function f : X→ Y, βX (k) ≤ βf (X )(k).
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